
NASA Conference Publication 2064
i .

LoAN COPY: RET
+F’WL TECHNICAL

VIRTLAND AFB,

Tools for Embedded
Computing Systems Software

Preprint for a workshop
held in Hampton, Virginia
November 7-8, 1978

nnsn 44

NASA '

&
c.1

I -~-.. ----- --_-. . ..G-. . . . _ ‘, ._. . _...-

II

NASA Conference Publication 2064

Tools for Embedded
Computing Systems Software

Preprint for a workshop sponsored by
NASA Langley Research Center, Hampton,
Virginia, and the American Institute of
Aeronautics and Astronautics, New York,
and held in Hampton, Virginia,
November 7-8, 1978

National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1978

FOREWORD

NASA, in cooperation with the AIAA Computer Systems Technical Committee,
sponsored this workshop on Tools for Embedded Computing Systems Software. The
rapidly increasing capabilities and decreasing costs of digital computing sys-
tems have meant orders of magnitude increases in the uses of these systems in
aerospace systems, particularly onboard satellites and aircraft. Its labor
intensive nature and crucial role in proper operation of the embedded computing
system have made the development and testing of software an expensive and crit-
ical function. To cut the cost of the development of the embedded system soft-
ware while enhancing its reliability, a number of tools (i.e., computer programs)
have been developed in the recent past.

The objectives of this workshop were to assess the current state of these
tools and determine directions for future tool development. The workshop was
organized around four major areas: Tools and the Software Environment (devel-
opment and testing); Tools and Language Processors; Tools and Software Require-
ments, Design, and Specification; and Tools and Verification and Validation
(analysis and testing). This document contains only a synopsis of the talk and
the key figures of each formal workshop presentation together with summaries by
each of the session chairmen.

The synopses were submitted as camera-ready copy prior to the workshop.
Only minor editorial changes have been made and a title page and abstract have
been added. The assistance of the Scientific and Technical Information Programs
Division of the NASA Langley Research Center in publishing this preprint is
gratefully acknowledged.

The workshop was structured to provide ample time for audience interaction
in addition to the formal presentations. On the evening of November 7, a panel
discussion on "Software Management, Methodology, and Tools" was held. The
panelists were Victor Basili, University of Maryland; Jack Garman, Manager of
Shuttle Avionics Software at NASA Johnson Space Flight Center; James Stringer,
Computer Sciences Corporation; and Kenneth A. Hales, Boeing Aerospace Company.

The Workshop Subcommittee were Terry A. Straeter, Chairman, NASA Langley
Research Center; Phil S. Babel, Wright-Patterson Air Force Base; James W. Clark,
United Technologies Research Center; George R. Fath, General Electric Company;
Charles H. Fletcher, Stromberg Carlson Corporation; Sabina H. Saib, General
Research Corporation; Robert 3. Schwartz, McDonnell Douglas Astronautics Company;
and Lynn S. Wilson, Grumman Data Systems Corporation.

Use of manufacturers or identification of commercial products in this
report does not constitute an official endorsement of such manufacturers or
products, either expressed or implied, by the National Aeronautics and Space
Administration.

Terry A. Straeter
Program Chairman

iii

CONTENTS

FOREWORD.................................iii

SESSION IA - TOOLS AND THE SOFTWARE ENVIRONMENT (DEVELOPMENT)
Chairman: Kenneth A. Hales, Boeing Aerospace Company

1. THE SOFTWARE ENVIRONMENT - NOW AND IN THE FUTURE 1
Kenneth A. Hales, Boeing Aerospace Company

2. THE SYSTEM DESIGN LABORATORY (SDL) 7
W. Lin Sutton and Patricia Santoni, Naval Ocean Systems Center

3. INSTRUMENTATION AND CONTROL OF A VIRTUAL MACHINE . . , 11
Majorie K. Kirchoff and S. Harris Dalrymple, McDonnell Douglas
Astronautics Company

4. NASAISIS . 15
W. Joseph Berman, University of Virginia

5. SOFTWARE SYSTEMS DEVELOPMENT AT GRUMMAN AEROSPACE CORPORATION 21
Jack Rosenbaum, Grumman Aerospace Corporation

SESSION II - TOOLS AND LANGUAGE PROCESSORS
Chairman: Fred H. Martin, Intermetrics, Inc.

6. LANGUAGE TOOLS -WHERE THE LEVERAGE IS 25
Fred H. Martin, Intermetrics, Inc.

7. PATH EXPRESSIONS FOR REAL-TIME PROGRAMMING 29
R. H. Campbell, University of Illinois at Urbana-Champaign

8. VERIFIABLE PASCAL . 33
Sabina H. Saib, General Research Corporation

9. ANEWMETAASSEMBLER. 37
K. V. Smith, Z. Jelinski, J. B. Churchwell, and S. Park,
McDonnell Douglas Astronautics Company-West

10. A UNIVERSAL FLOWCHARTER . 41
J. Rood, T. To, and D. Harel, Higher Order Software, Inc.

11. THE APPLICATION OF SOFTWARE ENGINEERING TECHNIQUES TO THE DESIGN
OF RELATIVELY MACHINE-INDEPENDENT CODE GENERATORS 45

Robert E. Noonan, College of William and Mary, and
Patricia Timpanaro, Computer Sciences Corporation

SESSION IB - TOOLS AND THE SOFTWARE ENVIRONMENT (TESTING)
Chairman: Kenneth A. Hales, Boeing Aerospace Company

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

AN AVIONICS SOFTWARE DEVELOPMENT EXPERIENCE
L. C. Klos, General Dynamics Corporation

FUNCTIONAL SIMULATION OF SPACE SHUTTLE FLIGHT PROGRAMS
Arra Avakian, Inter-metrics, Inc.

PROVE - A TOOL FOR SOFTWARE VERIFICATION
Randall J. Varga, The Singer Company, Kearfott Division

INTERPLANETARY SPACECRAFT COMPUTER SOFTWARE TEST AND VALIDATION
TOOLS .

Daniel E. Erickson, Jet Propulsion Laboratory

A SOFTWARE CHANGE DEVELOPMENT LABORATORY FOR SUPPORTING AN AGGREGATE
OF EMBEDDED COMPUTER SYSTEMS .

F. H. Kishi, TRW Defense and Space Systems Group, and
D. R. Corder, Oklahoma City Air Logistics Center

SESSION III - TOOLS AND SOFTWARE REQUIREMENTS, DESIGN, AND SPECIFICATIONS
Chairman: Lt. Col. Charles John Grewe, Jr., U.S. Air Force

Electronics Systems Division

TOOLS AND SOFTWARE REQUIREMENTS, DESIGN, AND SPECIFICATIONS
Lt. Col. Charles John Grewe, Jr., U.S. Air Force
Electronics Systems Division

THE DEVELOPMENT OF PROGRAMS TO MEET EXCEPTIONAL RELIABILITY
REQUIREMENTS............................

P. M. Melliar-Smith, SRI International

DESCRIBING A TRIPLY-REDUNDANT FLIGHT CONTROL SYSTEM FOR
VERIFICATION OF DESIGN .

Edward R. Rang, Honeywell, Inc.

SOFTWARE DESIGNERS WORKBENCH - REQUIREMENTS AND DESIGN TOOLS FOR
EXPRESSION AND EVALUATION .

Paul A. Scheffer, Martin Marietta Aerospace

TOOLS FOR EMBEDDED SOFTWARE DESIGN VERIFICATION
J. C. Enos and R. R. Willis, Hughes Aircraft Company

AN EVENT-BASED DESIGN METHOD FOR EMBEDDED SOFTWARE SYSTEMS
William E. Riddle, University of Colorado at Boulder

A TECHNIQUE TO AID IN THE DESIGN AND ANALYSIS OF DYNAMICALLY
STRUCTURED, CONCURRENT SOFTWARE SYSTEMS

Jack C. Wileden, University of Massachusetts
1

49

53

57

65

71

75

81

85

89

93

97

LO1

vi

SESSION IVA - TOOLS AND VERIFICATION AND VALIDATION (ANALYSIS)
Chairman: Sabina H. Saib, General Research Corporation

24. USING HDM FOR EMBEDDED SYSTEMS : 105
.L. Robinson and K. N. Levitt, SRI International

25. AN INTEGRATED VERIFICATION AND VALIDATION TOOL FOR FLIGHT SOFTWARE . . 109
Richard N. Taylor, Leon J. Osterweil, and Leon G. Stucki,
Boeing Computer Services Company

26. USE OF SYMBOLIC EXECUTION IN VERIFICATION AND VALIDATION 113
Marilyn S. Fujii and Michael A. Ikezawa, Logicon, Inc.

27. SQLAB - TOOLS FOR PROGRAM VERIFICATION 117
Sabina H. Saib, General Research Corporation

28. A SOFTWARE QUALITY ASSURANCE EXPERIMENT 121
J. P. Benson and S. H. Saib, General Research Corporation

SESSION IVB - ~0oLs AND VERIFICATION AND VALIDATION (TESTING)
Chairman: Sabina H. Saib, General Research Corporation

29. A SIMULATOR DEVICE FOR VALIDATION OF GENERAL AVIONICS
EMBEDDEDSOFTWARE . 125

Byron M. Allen and Gary H. Barber, Intermetrics, Inc.

30. DYNAMIC INTEGRATED TEST FOR THE SPACE SHUTTLE 129
Saul F. Stanten, Intermetrics, Inc.

vii

1
THE SOFTWARE ENVIRONMENT - NOW AND IN THE FUTURE

Kenneth A. Hales
Boeing Aerospace Company

SUMMARY

The present status of facilities and support tools used to develop and
integrate software are characterized and described. An assessment of these
present systems is made and a projection is offered which characterizes soft-
ware development systems of the future.

PRESENT SYSTEM CHARACTERISTICS

Software Development Triangle

The design and development of embedded software systems is performed on
computers found in software development laboratories. The selection of the
computers which contain the embedded software code is a function of the oper-
ational requirements, as well as a function of the languages used to develop
software, and the types of computers used to initially generate the software.
Figure 1 describes the software development triangle. In the bottom left-hand
corner of figure 1, the program generation center computers are identified.
These computers are called "host computers." They provide a home for the
support software used in conjunction with the application code to generate and
test software which will ultimately run on the operational or "target" computers
shown in the bottom right-hand corner of figure 1. To complete the triangle,
higher-order languages are identified.

The triangle is subjected to external influences. For example, the higher-
order language of the system of software is influenced by the desire to have
high programmer productivity and cost-effective software maintainability, and
is a function of specified government regulations. The target computers are
strongly influenced by operational requirements. The type of program generation
center computers is influenced by the quantity of software that has to be
generated. For example, if only a small amount of software has to be generated,
it is possible that the target computers can be used to provide adequate host
support.

In selecting the host computers, target computers, and the higher-order
language for the embedded system under consideration, availability of compilers,
as well as a complement of extensive support software, must be considered in
making the final decision. The ideal situation is to select target computers
which are highly satisfactory in meeting operational requirements while also
being compatible with program generation center computers which contain an

extensive suite of support software. Ideally also, is the selection of a pro-
gram generation center suite of computers which can be dedicated to the specific
project or is available within the company's central computing facility run by
a central/trained staff. The program generation center should also be compati-
ble with the most effective means of generating software, which in some cases,
requires the ability to code interactively in a higher-order language.

To effectively integrate software elements into a working system, extensive
amounts of simulations are performed. Figure 1 indicates that host simulations
are used within the program generation center. Host software accepts functional
simulations, or instruction level simulations, so that the developed software
may be extensively integrated against models of the external environment while
still operating on the host computers. Real time simulations are also used.
These simulations require software, computers, and possibly hardware, and inter-
face with the operational target computers. To properly generate a solution to
the problem of the most effective software development system, the aspects of
the software development triangle must be comprehensively evaluated.

Software Development and Integration Facilities

Figure 2 describes the ingredients of a successful environment. Figure 2(a)
symbolizes a building or a facility which is designed for the programmer.
Further material is available on the architectural design of a laboratory for
program development (reference 1). Within a building, a facility will exist
which will contain a host machine with extensive support software and appropri-
ate peripherals (see figure 2(b)). This computer complex is used to develop the
software. The software project may also contain a facility which has a target
computer interfacing with a simulation computer and selected pieces of system
hardware. The latter facility is used to integrate the software. Figure 2(c)
symbolizes this target machine complex. The target computer runs the embedded
application software. The simulation computer contains a model of the external
environment. The hardware is representative of one or more pieces of hardware
which the target computer must control. Initially, the target computer will
work directly and solely with the simulation computer. As hardware becomes
available during the development of the total project, pieces of mature hard-
ware can be entered into the target machine complex and simulated elements
contained within the simulation computer dropped out. This will allow the
target computer software to be integrated as a system and checked out against
the models of the external hardware and high confidence pieces of the actual
computer hardware prior to releasing the target computer and software to the
system-oriented software/hardware integration phases of a project. Figure 2(d)
symbolizes the final aspects of the ingredients of a successful environment.
Here tools, standards, training, etc., are shown which are project unique and
company unique. These products have been built with the productive development
and management of software in mind.

The host machine complex and target machine complex are sometimes combined,
or sometimes separate in a given application. Figure 3 shows the most common
combinations of computer elements. Figure 3(a) shows a multipurpose host complex
where the host computer is equivalent to the machine which will be delivered as

2

part of the embedded computing system. Here the host machine complex is used
to develop the software, as well as integrate the software. The host machine
will contain functional simulations, as well as real-time simulations so that
software may be generated, checked out functionally,.and then operated in real
time against a real-time simulation of the external environment contained within
itself. In the case that the target computer is quite different from the host
machine computer, a software development and integration complex is created
(see figure 3(b)). The host machine complex is used to develop software and con-
tains a real-time simulation which interfaces with the target computer. The
target machine software is exercised against the real-time simulation in the
host machine complex. The most extensive software development facility contains
.a partitioned software development and integration complex (figure 3(c)). The
host machine complex shown in the figure is the host for software development.
The second portion of the facility is a software integration center consisting
of the target computer, a simulation computer, and selected external hardware.
The software integration center is used to exercise target machine software.
Numerous examples of various applications'of the combinations shown in figure 3
are found in the literature.

ASSESSMENT OF PRESENT SYSTEMS

The Computer Technology Forecast and Weapon Systems Impact Study was held
at the U.S. Air Force Academy from August 14-25, 1978. The Technology Forecast
and Impact Study made an assessment of the present state of the art in program-
ming environment. The panel of experts related to software stated that exag-
gerated claims have been and continue to be made for isolated tools and tech-
niques. They pessimistically stated that most program development is done with
severely inadequate tools. They also indicated that a compiler is frequently
equated with a programming environment. In reality, a compiler constitutes only
one small, albeit important, component of an automated environment for program-
ming. They made the point that management awareness of the progress of soft-
ware development is woefully inadequate. The study also confirmed that experi-
mental use is being made of selective tool and technique concepts not yet
widely available. In short, the study panel indicated that the trends are in
the right direction, but significant progress has to be made before the numer-
ous claims for techniques to enhance productivity will become a reality.

DESCRIPTION OF FUTURE SYSTEMS

Future host systems will consist of a generalized input/output port acces-
sible to the user. This port will interface with remote, distributed systems of
computers as shown in figure 4(a). The host system of software will exist on nu-
merous computers.
languages.

The user will be able to program in his choice of higher order
Extensive support software systems for numerous target machines,

including microprocessors, will exist.
development tools.

The host system will include extensive
Algorithm banks will exist on the host system with automated

3

language/machine dependent translation capabilities so that the algorithm banks
are portable between applications. Evidence of trends toward the future host
system is described in reference 2. In addition, the Technology Forecast and
Impact Study describes the National Software Works (NSW). This concept is a
joint Air Force/ARPA sponsored program to provide a configurable programming
environment through the use of computer networking. It allows the software
developer to use software tools on various computer systems.

Future integration and maintenance systems will consist of a generalized
host complex, as well as a generalized target/simulation computer complex.
This concept is proposed in reference 3 and symbolized in figure 4(b).

The Technology Forecast and Impact Study forecasts that future trends will
see generalized programming environments being designed and selectively imple-
mented. Hardware manufacturers will provide machine and language dependent
environments as subelements of the generalized programming environment.
Techniques will be developed to isolate language and operating system depend-
encies as much as possible. They pointed out that the higher order language
standardization within DOD will make it possible to achieve a rich program
development environment accessible to a large number of people. The generalized
programming environment will host more and more automation tools which will be
provided to enhance the development, management and testing of future systems.

Future directions are becoming more focused. Future systems are now able
to be articulated and described. Now all that is needed is effort, time, and '
commitment.

REFERENCES

1. McCue, Gerald M.: IBM's Santa Teresa Laboratory - Architectural Design for
Program Development. IBM Syst. J., vol. 17, no. 1, 1978, pp. 4-25.

2. Sutton, W. Lin; and Santoni, Patricia: The System Design Laboratory (SDL).
Tools for Embedded Computing Systems Software, NASA CP-2064, 1978.
(Paper no. 2 of this compilation.)

3. Kishi, F. H.; and Corder, D. R.: A Software Change Development Laboratory
for Supporting an Aggregate of Embedded Computer Systems. Tools for
Embedded Computing Systems Software, NASA CP-2064, 1978. (Paper no. 16 of
this compilation.)

The Software Development Triangle

LANGUAGES

PROGRAMMER PRODUCTIVITY
SOFTWARE MAINTAINABILITY
GOVERNMENT REGULATIONS

CODE GENERATORS
ASSEMBLERS
LINK EDITORS

+
SYSTEM GENERATION

+
QUANTITY OPERATIONAL

EFTW AR E
REOUIREMENTS

Figure 1

lngredien ts of a Successful En vironmen t

(a) Facility designed for programmer. (b) Host machine with support software
and appropriate peripherals.

HARDWARE I

(c) Target machine complex.

ml (d) Tools, standards, and training with
the productive development/management
of software in mind.

STDS TRAINING , ------
COURSE

Figure 2

Most Common Combinations of Computer Elements

HOST

n

MACHINE
COMPLEX pq**+q

0 HOST FOR DEVELOPMENT 0 HOST FOR 0 EXERCISE
l REAL TIME SIMULATION DEVELOPMENT TARGET

0 REAL TIME MACHINE
SIMULATION SOFTWARE

(a) Multipurpose host complex (b) Software development and
with host z target. integration complex.

0 HOST FOR 0 EXERCISE TARGET
DEVELOPMENT MACHINE SOFTWARE

l IN SOME CASES THE TARGET COMPUTER IS USED AS THE HOST AS WELL

(c) Partitioned software development and integration complex.

Figure 3

Future Systems

0 USER 0 GENERALIZED
I/O PORT

l MULTIPLE COMPILERS

l MULTIPLE HOSTS

l SUPPORT SOFTWARE SYSTEMS
FOR NUMEROUS TARGET
MACHINES (INCLUDING MICROPROCESSORS)

0 EXTENSIVE DEVELOPMENT TOOLS

l ALGORITHM BANKS WITH
AUTOMATED LANGUAGE/MACHINE
DEPENDENT TRANSLATION

(a) Future hosts.

(b) Future integration and maintenance systems.

Figure 4

2
THE SYSTEM DESIGN LABORATORY (SDL)

W. Lin Sutton and Patricia Santoni
Naval Ocean Systems Center

The System Design Laboratory (SDL) is a joint ARPA/Navy project which
brings together in one widely accessible, cohesive environment the tools which
are needed by the designers and developers of embedded computer systems. It
is intended to support work in software, firmware, and hardware systems design
and development. The goal of SDL is two-fold: (1) to make those tools that
exist available to the designers of Navy Systems and (2) to promote the neces-
sary research in areas where adequate tools do not exist.

Eventually, SDL will include tools in the areas of requirements (e.g.,
Hierarchical Development Methodology hierarchy manager and Specification and
Assertion Language (SPECIAL) analyzer), modelling (e.g., simulation languages),
implementation (e.g., language processors, emulator/debuggers for target
machines), and testing (e.g., the Automated Testing Analyzer for CMS-2M). In
addition to these, there will be tools to support text composition, document
generation according to MIL standards, project management, and the various re-
formatting routines that may be necessary to prepare the output of one tool
for input to another tool.

Currently, SDL primarily offers an AN/UYK-20 and Intel 8080 software
generation center. The outstanding feature in this environment is a micro-
programmed emulation of eqch of these machines which provides a CPU and periph-
erals with all of the options available on the real equipment, plus very
sophisticated debugging capabilities. These tools reside on the ARPANET on
two host machines, (a DEC PDP-10 and an IBM S/360-91) and a micro-programmable
emulator, the MLP-900. All processing is done on the host machines to generate
code for the target machines. The user primarily works from a terminal until
all possible testing has been done via the SDL facility and it is time to
generate a tape of his system to try on his actual hardware.

Since the opening of the SDL/IOC, several projects from different Navy
and industry activities have made use of its facilities. Among them have been
projects from NESEC, NOSC, Litton, and SDC which primarily made use of the
AN/UYK-20 software generation and debugging capabilities; projects from FCDSSA
and NOSC which have made use of the PSL/PSA and URL/URA tools; and projects
from NOSC which have experimented with the upcoming HDM tools, including the
specification language SPECIAL. The usage to date has been primarily experi-
mental and has served to shake out many of the SDL concepts and tools. Users
have shown special enthusiasm for those tools which are not available else-
where, including the PRIM emulation tools, the HDM tools, and the ATA.

The SDL is an idea which is long overdue in the DOD. In the future it
will continue to evolve and include more of the sort of tools indicated above
and pursue more of the research needed to bring the cost of military embedded
computer systems down to a more reasonable level.

lOC(INITIALOPERATINGCAPABILITY)

CMS-2SOFTwAREDEVELOPMENT FACILITY
UYK-20SOFTWARE DEVELOPMENT FACILITY

TOOLSONHOSTCOMPUTERSINTHEARPANET
NS~(NATIONALS~FT~AREW~RK~)INTERFACE
As AVAILABLE
T~~LSET(F~R UYK-~~ANDINTEL~O~O)

CROSS-COMPILERS
CROSS-ASSEMBLERS
EMULATOR/SIMULATOR

Figure 1

AUTOMATEDDESIGN FORC3SYSTEMS
SYSTEMDESIGN LAB (SDL)

Transitions (Users)
NESEC, San Diego, use of UYK-20 emulation/debug tool during test,
acceptance, and maintenance of NAVMACS

FCDSSA, San Diego and NOSC utilizing user requirements language/user
requirements analyzer (URL/URA) in design of new NTDS program

NOSC using Hierarchical Design Methodology (HDM) to partition design
for GPS navigation system user terminal

NOSC JTIDS project using the UYK-20 emulation and debug capabilities
in the development of the UYK-20 netway and biway software

Litton using SDL tools in development of Advanced Communications
Control System (ACCS) software

Figure 2

TTm-rr
METHODOLOGIES AND TOOLS

Figure 3

YODEL YPLEMEKT
/ I / \ /I\\

METHODOLOGIES AND TOOLS

Figure 4

APPROACH:

1. DEVELOP A REPOSITORY TO HOST DESIGN AND
DEVELOPMENT TOOLS

2. PERFORM FEASIBILITY DEMONSTRATIONS OF
NEW TECHNOLOGIES. MAKE TOOLS WIDELY
AVAILABLE IN ACCORDANCE WITH MERIT

3. SPONSOR NEW RESEARCH IN DESIGN
TECHNOLOGIES WHERE NOT OTHERWISE
PROVIDED

Figure 5

PURPOSE:

UPGRADE THE TECHNOLOGY AVAILABLE TO

DESIGNERS AND DEVELOPERS OF EMBEDDED

MILITARY COMPUTER SYSTEMS

Figure 6

10

3

INSTRUMENTATION AND CONTROL OF A VIRTUAL MACHINE

Majorie K. Kirchoff and S. Harris Dalrymple
McDonnell Douglas Astronautics Company

The use of microcoded emulations as a technique for the development and
validation of real-time software has proven to be a very versatile and effec-
tive tool. Since the virtual machine produced through emulation is a product
of software, it is possible to imbed a wide range of debugging facilities not
ordinarily available in its hardware counterpart. Extensive error checking may
be performed, programming standards and application peculiar conditions moni-
tored, and performance measurement statistics generated. Also, external inter-
faces may be simulated to provide a dynamic execution environment as well as
collect output such as a telemetry stream for postmortem analyses.

To control this complex virtual machine, a unique dual emulation approach
has been developed which capitalizes upon the availability of a wide spectrum
of support software on the secondary machine. Hosting the emulation systems
is a Nanodata QM-1, a machine specifically designed to support multiple emula-
tions. It features a three-level memory system, each of which is writable:
Main Store (core) for tar et machine code,

9
Control Store (LSI) for vertical

microcode, and Nanostore LSI) for horizontal microcode.

By combining a NOVA 1200 emulator with the real-time computer emulator,
software development systems for three control processors have been developed:
SCP-234, MAGIC 352, and LC-4516. While each of these emulators is quite unique,
their control has been uniformly accomplished by means of programs, written
primarily in FORTRAN, running on the emulated NOVA. The memory resources of
the QM-1 are divided between the two emulators while the peripheral devices are
assigned to the NOVA.

Communicaion between the emulators is accomplished via a common buffer
residing in control store. Special instructions have been added to the NOVA
emulator to allow it to read/write into control store, to read/write into the
target machine main store, and to "turn on" the real-time processor. In a
similar manner, the real-time processor emulation when detecting an error or
requiring I/O services can return to the NOVA leaving a flag in the comnunica-
tions buffer to indicate the action required.

Once a real-time program has been debugged, it is often necessary to make
a large number of parametric runs to validate or verify the input parameters
for various applications of the software. Increased speed may be obtained by
deleting capabilities from the emulator and migrating functions from the con-
trol program down to the microcoded emulator while at the same time requiring
minimal modification to the supporting control program.

11

.i-

MDAC EMULATION LABORATORY QM-1 CONFIGURATION

MAIN STORE CONTROL

55K STORE NAN0 STORE
512

1s BITS 12K
18 BITS 360 BITS

I I I_
M-1 CENTRAL PROCESSING “NIT

ALU ROTATE, MASK AND INDEX “NIT
INDEX ALU BASE AND FIELD LENGTH REGISTERS
ALUF 32 BIT SHIFTER
CLOCK ASYNCHRONOUS LINE CONTROLLERS (3)

I

CONTROLLER

Figure 1

SINGLE USER DUAL EMULATION SYSTEM

CONTROL PROGRAM

PROGRAM
AN0
DEBUG
CONTROL
ENVIROMENT

TARGET
COMPUTER
APPLICATION
PROGRAM

EXCEPTIONAL

Figure 2

12

PROGRAM CONTROL FACILITIES

l LOAD DECKS

0 CHECKPOINT

. RESTORE

. RESET

. CHANGE PARAMETERS

l EXECUTE

l CONTINUE

l SELECTIVE MEMORY CLEAR

. TELEMETRY STREAM CAPTURE

l DYNAMIC INTERRUPT

Figure 3

DEBUG CONTROL FACILITIES

l BREAKPOINTS

.TRACES (SEQUENTIAL AND BOUNDED)

. SNAP DUMPS

l MEMORY AND REG I STER DUMPS

l MEMORY AND REG I STER EXAM INAT I ON

.MEMORY AND REGISTER MODIFICATION

. MEMORY IF I LE COMPAR I SON

.ERROR CONDITION DETECTION

Figure 4

13

ERROR CONDITION DETECTION

.MISSING CARDS IN DECK

. ILLEGAL OPERATION

. ILLEGAL INPUT/OUTPUT COMMAND

l ILLEGAL EFFECTIVE ADDRESS

. IMPROPER REGISTER USAGE

. INFINITE LOOPS

l INTERRUPT PROCESSING TOO LONG

l FORCED BREAKPOINT

. HALT INSTRUCTION

Figure 5

SAVINGS VIA EMULATION (DIGS-DELCO PROGRAMS)

COST COMPONENT SIMULATION MDAC 9b-
ALTERNATIVE EMULATION SAVINGS

1. DEVELOPMENT TIME
- TOOL --- 1.2 MAN-YR
-COMPUTER PROGRAMS 4.5 MAN-YR 2.5 MAN-Y R 18%

TOTAL 4.5 MAN-Y R (EST) 3.7 MAN-YR

2. MACHINE TIME
- COMPUTER COST/Ml N $7/MIN (S/3701 $. 51MI N (MDAC PM-l)
- RATI 0: TOOL TO REAL-TIME f&l:1 4.5:1 OVER
-AVERAGE REAL-TIME RUN 1 Ml NUTE 1 MINUTE 99%
- NUMBER OF RUNS 650 650

TOTAL COST $273K - $l!xm

TOTAL COSTS
AT tXIK/MAN-YEAR 5ODK 185K 62%

Figure 6

14

-

4
NASA ISIS*

W. Joseph Berman
University of Virginia

The National Aeronautics and Space Administration Interactive Software
Invocation System (NASA ISIS) is being developed as the central resource of the
Multipurpose User-oriented Software Technology (MUST) project. The goal of
MUST is to assist in the development of flight software by providing a
comprehensive collection of software tools such as requirement analyzers,
simulators, static code analyzers, compilers, assemblers, dynamic code
analyzers, test case generators, flow charters and report generators. The
function of NASA ISIS is to facilitate the use of these tools and to guide the
programmer/engineer through an orderly development of flight software.

The major components of NASA ISIS were motivated by considering the flight
software development process in detail. This analysis showed that the most
important function which the system must perform is to manage the large number
of data files (e.g., source modules, object modules, test data and device
characteristics) used during software development.. In NASA ISIS, these data
files are organized into an indexed, hierarchical file system. This file
system also allows the storing of multiple "versions." of any file, facilitating
both experimental development of a file and retention of a file's history.

The data files which are used in developing flight software can be divided
into three basic classes. Source modules and documentation are common examples
of textual data. In NASA ISIS, textual files are structured as numbered lines
and a text editor allows processing by both linenumber and content criteria.
It was found that numeric data files are almost always arranged in a tabular
format and that the processing requirements are typically quite straightforward.
This suggests that a full database management system is probably unnecessary and,
therefore, NASA -ISIS provides only a simple and elegant retrieval capability for
tabular files. Finally, many data files do not require interactive processing
(e.g., object modules).

Once the user has stored the necessary data for a given package, it is
often necessary to transform this data into a format acceptable to the tool.
While this capability is functionally no different than the interactive editing
facilities, it implies the further capability of being able to store complex
editing sequences for use by those uninterested in the details of the
transformation. In NASA ISIS, these transformations are termed "invocations".

Despite the apparent diversity of the file management, text editing,
data manipulation and invocation components of NASA ISIS, there are many
primitive functions in common. To take advantage of this overlap and to
present the user with a cohesive interface, NASA, ISIS was designed as a single,

*Research supported by NASA Contract NASl-14862.

15

unified system controlled by an "interactive programming language". This
language is based upon many of the precepts of PASCAL, but has been especially
tailored to the interactive environment and to the special capabilities of the
rest of the system. Since this language allows the use of numeric and string
literals, types and type constructors, variables, and terminal communications,
it is significantly more powerful than most desktop calculators. In addition,
the system actually compiles the language into an intermediate code for
execution by a virtual machine. This allows both immediate execution of input
lines ("command mode") and the storing of the intermediate code for later
execution (Vcompiled mode").

In addition to suggesting the major components of the system, the study of
the flight software development process made it clear that any implementation
of NASA ISIS needed to have certain characteristics. Since there are several
groups within NASA which produce flight software and these groups use different
computing systems, it is very important that the system be as transportable as
possible. To achieve transportability, the current version of NASA ISIS has
been written almost exclusively in a carefully chosen subset of PASCAL. In
addition, the implementation takes as little advantage of the host operating
system as possible and the interface to the operating system is isolated to a
single assembly-language module.

Another aspect of the implementation of NASA ISIS is that it should be as
adaptable as possible. As an interactive system is implemented and made
available to its user community, there is inevitably feedback from the users on
improvements to the system. In the current version of NASA ISIS, the
separation of the parsing and execution phases considerably simplifies changes
in syntax, and the high degree of modularity (both at the functional and coding
levels) allows for significant alterations with only localized impact upon the
system.

The current version of NASA ISIS is only an engineering prototype. By
first implementing a prototype, it is possible to test many ideas and to
determine the system's utility before committing significant resources to the
development of a production model. As of November 1978, the engineering
prototype is substantially complete and is currently being evaluated at NASA
Langley Research Center. By February 1979 it is expected that this prototype
will be completed and distributed to the MUST user community for further
testing and evaluation. Finally, during the spring of 1979 the system will be
re-hosted from its current CDC implementation to an IBM 370/158 to determine
the system's transportability.

16

bIASA ISIS

IMPLEMENTATION

. ENGINEERING PROTOTYPE

TO TEST IMPLEMENTATION TECHNIQUES

TO ALLOW USER FEEDBACK FOR DESIGN OF PRODUCTION

SYSTEM

. ADAPTABILITY

BY SEPARATION OF PARSING AND EXECUTION PHASES

BY MODULARITY OF DESIGN AND OF CODING

. TRANSPORTABILITY

BY USING A SUBSET OF PASCAL AS IMPLEMENTATION

LANGUAGE

BY USING HOST OPERATING SYSTEM AS LITTLE AS

POSSIBLE

BY ISOLATING HOST OPERATING SYSTEM INTERFACE

TO SINGLE ASSEMBLY-LANGUAGE MODULE

. STATUS

NOVEMBER 1978 : BEGINNING EVALUATION AT LARC

FEBRUARY 1979 : DISTRIBUTION TO MUST USERS FOR

EVALUATION

APRIL 1979: TEST TRANSPORTABILITY TO IBM 370/158

Figure 1

17

NASA ISIS

I NTERACTI VE PROGRAMMING LANGUAGE

INITIAL DESIGN: INTERPRETED PASCAL

MODIFICATIONS:

DUE TO INTERACTIVE ENVIRONMENT

. USER PROMPTED FOR DECLARATION OF UNKNOWN IDENTIFIERS

. USER MUST EXPLICITLY ERASE UNWANTED IDENTIFIERS

l BUILT-IN TYPE OF STRIliG
l MULTI-STATEMENT CONTROL STRUCTURES (LIKE REPEAT-u!jTIL)

l PROCEDURES/FUNCTIONS ARE PREPARED AS TEXT, THEN

COMP I LED

DUE TO OTHER NASA-ISIS CAPABILITIES

l SPECIAL STATEMENTS TO CONTROL FILE MANAGEMENT,

DATA EDIT.1 NG AND -JOB SUBMITTAL

Figure 2

18

NASA ISIS

r
SOURCE ASSEMBLY OBJECT

REQUIREMENTS
TEST

CODE CODE CODE DATA
\ I \ A \

T\ ‘1
REQUIREMENTS

ANALYZER
I I 1 ANALYZER 1

I

1 COMPILER (
?- I I MACHINE

ASSEMBLER SIMULATOR

I

A TYPICAL IUST CONFIGURATION

Figure 3

5

SOFTWARE SYSTEMS DEVELOPMENT AT GRUMMAN AEROSPACE CORPORATION

JACK ROSENBAUM
GRUMMAN AEROSPACE CORPORATION

Embedded Software Systems, including on-board avionics systems, trainers,
simulators, and automated test equipment, are a major product line at Grumman
Aerospace Corporation. In recognition of the marked increase in software intensity
on these projects, a'new department was formed to focus attention on, and develop
a unified corporate approach to embedded software development. As indicated in
Figure 1, the Software Systems Department (SSD) interfaces directly with Engineering
and Logistic Support groups to establish Functional Requirements and the necessary
hardware/software trades and then designs and develops the appropriate software
for integration into the total system.

In accordance with its charter, SSD is now creating a software development
environment, outlined in Figure 2, that spans the entire process from initial
functional requirements through installation and life cycle maintenance. Figure 3
is an overview of generic embedded systems life cycle and associated documentation
milestones. The actual chart is detailed to show each major step, identifiable
task, and contractually required reviews and documents, as specified in Navy and
Air Force Mil-Spec documents. The chartis the basis for the SSD Manual and Life
Cycle approach, and is reflected in departmental policies, guidelines, and manage-
ment plans. The key elements of our approach to developing software are outli,ned in
Figure 4. The current procedures are clearly in the direction indicated in DOD
Directive 5000.29.

Another major activity includes the development of computer-aided system for
software development, outlined in Figure 5, that supports our planned approach.
The automated environment currently includes a series of requirements development,
design development, configuration management, and documentation tools on a large
central host (IBM/Amdahl) installation that allows interactive use a project sites.
Program development and testing for Trainers is generally performed on-site in
dedicated Software Development Facilities incorporating the same hardware as the
target configuration. A development facility utilizing FASP on a CDC computer is
also available. Programming tools that support the development process are designed
to interface with, and provide status and "as built" data to the IBM/Amdahl for
project and configuration management.

The key software tools currently installed on the system, and their application,
are described in Figure 6. Our basic philosophy is to procure available systems
wherever possible, and integrate them into our overall system. Internal development
is undertaken to provide interfaces or to satisfy specific needs normally not
addressed in currently marketed systems. Wherever possible, tools developed on
projects are generalized and included in our facility. An ongoing technology
'project has as its major objective the long range development of a generic environment.

21

EMBEDDED SYSTEM DEVELOPMENT (SOFTWARE PERSPECTIVE)

0 s/w LOGICAl
DESIGN

o CODE/UNIT
TEST

) SOFTWARE
IMPLEM.

I DISCREPANCY o DISCREPANCI
CLOSEOUTS E CLOSEOUT

o SOFTWARE
DOCUM.

%J TRACING

'f; WARE
1

I

SYS EM
i INT GRATION/

TEST

SOFTWARE SYSTEMS DEPT.

#$Jj ENG’G/ILS SYSTEMS ENG’G.
” ‘, !&;\,.<y f,<,‘: ;‘; ENG’G/ILS COMPUTER ENG’G.

Figure 1

GAC SOFTWARE DEVELOPMENT ENVIRONMENT
SOFTWARE
SYSTEMS

DEPARTMENT DEVELOPllENT

TECHNQLIXY
DEVELOPPTNT

OPERATIONS
BUDGETS

RESOURCES
\ STAFF /

LIFE-CYCLE
MANAGEMENT

SOFTWARE
DEVELOPtlENT
ENVIRONWENT

AND
TOOLS

1
REPORTS

DOCURENTS

WORKSHOPS/TRAINING
METHODOLMj
C-...n.nm^

\ A.5
BUILT

STATUS

,IES
J I 6tN”Arn”J
LANGUAGES
HARDWARE

0 SCHEDULE

-\

PROJECT
ENVIRONMENT

FOR
SOFTWARE

DEVELOPMENT

Y COMPUTER
(ON/OFF SITE) II 0 rODELING ..^.^

0 CONF I G CONTROL
l QA
0 WCUIKNTAT ION

-
0 CODING 5 Y

0 TESTING 0 DEvELOPENT
0 INTEGRATION
0 TEST

Figure 2

22

SOFTWARE SYSTEM LIFE CYCLE OBJECTI’VES

CONCEPTUAL
nFFlNlT,ON

-
: : I

1 PROGRAM
:
I

PPS

PROGRAM
PDS I DESIGN

SPECIFICATION L; TEST I
TPR : PROCEDURE :

, REPORT ‘m

INTERNAL
DOCUMENT

PDD m

Figure 3

KEY LIFE CYCLE STANDARDS

PROGRAM PERFORMANCE SPECIFICATION

HARDWARE/SOFTWARE TRADES AND FUNCTION SELECTION

FUNCTIONAL DESCRIPTIONS (HIERARCHY, PROCESS FLOW)

PERFORMANCE CRITERIA

PROGRAM DESIGN SPECIFICATION

LOGICAL DECOMPOSITION TO UNIT MODULE LEVEL

DEVELOPMENT/TEST PLANS

MODULES LOGICALLY GROUPED FOR TESTING, (FUNCTIONAL THREADS)

DEVELOPMENT/SOFTWARE INTEGRATION TEST

USE OF DEVELOPMENT FACILITY AND SITS

DEVELOPMENT FOLDER/AUTOMATED TRACKING

FORMAL CIA AND BONDING

TRACKING

KEYED TO PERFORMANCE ON DEVELOPMENT UNITS

TIMING, LINES OF CODE, CORE ESTIMATES

Figure 4

23

SOFTWARE DEVELOPMENT ENVIRONMENT

REDtlTS e OR
DES I GN
flODELS

REOtlTS 6 DES I GN
DATA

BASES

r”““““““““‘“““‘-‘-‘--“---“------,

:
SOFTWARE flANAGEtlENT 6 CONTROL FACILITY

:
rm--‘-‘N-‘----kN---q

; AnDAHL V-S tVtl/CMSl 1Bfl 3701168 (VS) :
;SOFTHARE DEVELOPMENT#

I
! FACILITY (ON-SITE) !

;
.
I

:

q : :
I

:
i
I

: :
I L

I

ANALYSIS PROGS :
I

0 AIrIS :
0 TIMING ANALYSIS
l DATA DICTIONARY

;
,

0 SIGNAL LIST :
.--------------I---,

Figure 5

KFY SYSTFMS RFIATFD SOFTWARF TOOIS

0 Ill!!

INTERACTIVE MODELLING PROGRAM (IMP) DEVELOPS HIEARCHIAL
MODELS/CONTROL MAPS TRANSFORMS TO PSL OR TACT

0 PSL/PSA
PROBLEM STATEMENT LANGUAGE/ANALYSIS USED FOR DOCUMENTING
AND ANALYZING FUNCTIONAL REQUIREMENTS AND TRACING TO DESIGN

0 IKI

TRACKS AND STATUSES MODULES OF HIERARCHIAL STRUCTURE THROUGH
CODE, UNIT TEST AND INTEGRATION.

ANALYZES CODED NODULES FOR VARIABLE USAGE (COMMON, LOCAL, I/O,
ETC.) FOR USE IN CONFIGURATION CHECKING

0 SIGNAL AND MNEMONIC DICTIONARIES

DATA DICTIONARIES FOR AS BUILT CONFIGURATION

Figure 6

24

LANGUAGE TOOLS

WHERE THE LEVERAGE IS

Fred H, Martin
Intermetrics, Inc.

SUMMARY

This paper contains an overview of the "Tools and Language
Processors" Session of this workshop.

DISCUSSION

The life cycle development and utilization of embedded software
can be viewed as a succession of phases with appropriate feedback
among the phases. Roughly speaking, these can be identified as
requirements, specifications, design, code and test, validation
and maintenance. It is now generally acknowledged that at least
50% of the life cycle cost must be allocated to activities
following initial release of the program, viz., for validation
and maintenance. This would include listings and support documen-
tation for maintenance, independent verification and validation,
operational support, program enhancements and general maintenance.
Where the life time of the software is expected to be very long,
e.g., 20 year military systems, the figure 50% is

'probably conservative.

All of the software phases have been the subject of intense
study over the past few years. Significant results are usually
manifested by the appearance of a "software tool" to aid in
accomplishing a particular phase. Indeed, these tools are the
subject of this workshop.

It is interesting to note the potential cost payoff within
each phase, i.e., what contributions can reasonably be expected
with respect to lowering overall software costs. (Improving
reliability is viewed as an important factor in lowering cost.)
It is in this context that the leverage of a tool, or the ratio
of eventual benefit to initial cost must be kept in mind.

25

Intuitively, the further back in the chain of software
development one can introduce an improvement, the greater will its
cumulative effect be in improving the process, thereby reducing
the cost. Obviously, a coding error caught by a compiler will
necessitate the cost of a recompile, probably orders of magnitude
less, however, than the cost associated with finding the hidden
bug during validation, or worse -- operations. Receding further
back from the coding process into design, specifications or
requirements should produce correspondingly larger savings.

But what of the practicability of such improvements and the
necessary cost to achieve them? Without a doubt, the coding
process is the most mature and the most amenable to immediate
results. A veritable revolution has occurred in the last 10 years
with the recognition of the value of structured programming and
design. The readily available tool has been -- language. Capable
higher-order languages with strict data typing, finite control
structure and inherent redundancy have both improved programmer
efficiency and eliminated whole classes of errors. The elimina-
tion of a family of errors can reduce dramatically the scope of
necessary validation while at the same time improve, by definition,
software reliability.

Unfortunately, the connections between requirements and
specifications to language, on the one hand, and language to
validation, on the other, are still tenuous today. No satisfactory
expression of requirements has yet emerged, and although many
promising methodologies abound for specifications and design, the
translation to higher-order language implementation (or execution)
is still a human task. With respect to verification, deriving
the domain of necessary tests for a non-trivial program which
spans both operational requirements and potential anomalies is
still an unsolved problem. Usually, it's simply a question of
budgets. Validation must be a finite activity, and a large pro-
gram can be validated to the tune of 5, 50, or 500 man years.

While I'm not at all discouraged at the work being done in
requirements, specifications and validation, and the excellent
tools being developed and proposed, I believe that is it here --
in languages -- where the leverage is, i.e., the greatest payoff
for the least investment. The reasons are simple; the problems
are easier, the field is more mature and we are dealing with the
final product itself, not what it could or should be, or how it's
supposed to behave when stimulated, like a black box.

26

CONTRIBUTED PAPERS

The papers in this session reflect very practical attempts
to capitalize on the advantageous position that language has in
the life cycle process.

The first on "path expressions" recognizes that the source
programming language is the best place to express the complex
interactions necessary in real-time programming. Long ignored
and relegated to the assembly language executive or operating
system, several languages have attempted quite successfully (HAL/S,
PEARL, CONCURRENT PASCAL) to bring the light of day to real-time
control. The DOD-~ designs are now struggling with this important
feature. Path expressions allow synchronization and interaction
of shared resources to be expressed right within the static
structure of a program and thereby in an apparent and understand-
able form. The dynamics of asynchronous operations need not be
first discovered when the program executes.

Our second paper, again tries to place more information, and
increased redundancy in the programming language, so as to catch
automatically a larger class of errors and improve diagnostics.
Attention is paid to reformatting the listing, providing hier-
archical reports and to the preparation of tables for program
analysis. Note the immediate results to be gained through the
language and compiler. All the derived data concerns the actual
product. Much of the analysis can be carried out automatically:
it will reflect the current software immediately, and it is
accurate. It is gratifying to me to see these features being
added to PASCAL with the promise of more. One of the objectives
in the HAL/S design was to "wring out" of the program source
every conceivable aid toward understanding and verifying the
flight software.

The next paper is somewhat of a change of pace but actually
within the theme. Most flight computers require assemblers and
linkage editors for coping with the output of a compiler or for
handling necessary assembler language code. Unfortunately,
because most machines differ in detail, assemblers are written
anew. The enhanced META Assembler described in this paper employs
some of the powerful "front-end" techniques found in compilers and
allows full user flexibility over variable form and content. This
should reduce materially the cost and schedule for development of
arbitrary assemblers. I understand the META Assembler is readily
available and its rehostability and retargetability have been
demonstrated. In a sense it is a basic tool, often overlooked
in the context of language.

27

The fourth paper, in a way, is a synthesis of many of the
points discussed here. The Universal Flowcharter is itself
designed and built using the HOS methodology and the AXES specifi-
cation language. Specifications have been implemented, for
now, by hand in PASCAL. The result is a universal documentation
aid which can flow chart any block-oriented higher order language.
The charts should prove useful during design, verification, and
maintenance. Once again, the power and versatility of language
is evident. A formal grammar, expressed semantic rules, and
inherent redundancy provide enough information for the automatic
graphic algorithms and descriptive "concordances" presented in
the paper.

The final paper reminds us all that while programming languages
offer great potential, it's the compilers that deliver reality,
and compiler production has been very expensive, at best. In
today's technology the compiler "front end" from source to
immediate language (IL) is well understood and most modern
compilers employ this machine independent "Phase 1". However,
the IL must then be translated to a variety of target machine
instruction sets through a code generating process. Since each
target is usually quite different, much of the code generator
must be built from scratch.

This paper describes a method of designing a code generator
using the latest software methodologies so that classes of machines
can be paramaterized. This is accomplished by "hiding" the spe-
cific details of machine architecture thereby rendering a substan-
tial portion of the code generator target machine independent.

The research described first translates the HAL/S IL (HALMAT),
as an example, into a more amenable second IL for a particular
class of machines. Thereafter, new code generators for that
class can be implemented more economically.
that a finite set of "second IL's"

The implication is
should suffice to cover most

of the common machines.

Work is continuing in developing a tool to generate automatic-
ally good machine code from a defined IL.

CONCLUDING REMARKS

As chairman, I wish to express my appreciation to the
contributors for their interesting papers. I look forward to
the ensuing discussions at the Workshop.

28

7

PATH EXPRESSIONS FOR REAL-TIME PROGRAMMING

R. H. Campbell
University of Illinois at Urbana-Champaign

Many aerospace embedded computer systems involve the design and construc-
tion of system software requiring asynchronous processes, synchronization,
co-ordination and communication between processes, and guaranteed performance
within a set of real-time constraints. Such design is difficult, expensive
and error prone.

This paper presents research into mechanisms which aid the description
and analysis of real-time aerospace software and which can be adapted to
provide appropriate extensions to current programming languages. These
mechanisms are based upon path expressions. An experimental language called
PATH PASCAL was developed as a testbed to study the implementation and
interactions of these mechanisms and to observe their use in a realistic
environment. PATH PASCAL extends PASCAL to include concurrent processes,
path expressions to provide synchronization and co-ordination, and an
encapsulation mechanism which, together with the path expressions, provides
synchronized access to shared, protected data. PASCAL was chosen because,
in our opinion, it is a well-engineered compromise between expressiveness,
generality, efficiency, clarity, and simplicity.

To gain practical experience with these mechanisms, we are conducting
two experiments. Several real-time systems programs are being written for
a PDP-11, including I/O device drivers, schedulers, and network communica-
tions. The execution times of these programs will be estimated and measured
to provide statistics for research into deadlines. In a separate project,
the language will be used by system programming students. Their experiences
will provide valuable insights into the appropriateness of these mechanisms.

The PATH PASCAL testbed has been successfully implemented together with
both a simulated real-time environment and asynchronous I/O. The compiler
translates PATH,PASCAL to an intermediate code which can be interpreted on
a CYBER 175, or assembled into machine code for execution on a PDP-11.
The feasibility of using Open Paths to specify synchronization has been
shown by our implementation. A practical evaluation of this mechanism can
now be undertaken and comparisons made with other synchronization techniques.
The implementation and language can also be used to provide a basis for
future experiments involving modifications to the synchronization mechanism
and further language extensions.

Future experiments will include more sophisticated Path expressions, a
guaranteed deadline mechanism which provides a graceful degradation of
service while maintaining the guarantee of meeting deadlines, error recovery
mechanisms based on recovery blocks, language mechanisms to allow device I/O

. . .
29

routines to be written in a high-level language and possible generalization
of the mechanisms to include networks of systems.

To conclude, PATH PASCAL is a feasible testbed for investigating
mechanisms to synchronize concurrent processes in real-time aerospace systems.
The language mechanisms we have implemented interact cleanly with the PATH
PASCAL language and lead to a straightforward implementation. The PDP-11
PATH PASCAL runtime system is only slightly different from that of ordinary
PASCAL. PATH PASCAL is portable and can be used on a variety of computers.
Finally, this experience indicates that similar modifications can be made
to existing block-structured avionic languages.

30. ’

PURPOSE:

*Develop Language Mechanisms for Aerospace Systems.

*Synchronize Co-operating Concurrent Processes.

Separate Synchronization Specification ------- Open Path.

Shared Data Structure and Encapsulation ------ Object.

Concurrent Execution ------------------------- Process.

*Real-Time Constraints.

Figure 1

MOTIVATION:

*Increasing Complexity (Concurrency, Real-Time Constraints) causes

Costly, Difficult and Error Prone Software Development.

*Realistic Testbed for Experimentation:

Observe Use of Language Mechanism.

Pascal: Real Language.

Small, Modifiable.

Well-Engineered.

Figure 2

FLTTURE RESEARCH:

*Alternate Path Notations.

*Guaranteed Deadline Mechanism.

*Error Recovery Mechanism.

*Mechanism for Programming Device I/O Routines.

*Networks.

Figure 3

31

PROGRESS AND EVALUATION:

*Path Pascal Language with Simulated Real-Time Environment and

Simulated Asynchronous I/O.

*CYBER 175: Interpreted Intermediate Code.

*PDP-11: Executed Machine Code.

*Open Paths are Feasible.

*Practical Evaluation and Comparison is Possible.

*Basis for Future Experiments.

Figure 4

FUTURE APPLICATIONS:

*Real-Time Experimentation on PDP-11.

I/O Device Drivers.

Schedulars.

Communications.

Estimating and Measuring Execution Times.

Deadlines.

*Systems Programming Class Projects.

Figure 5

CONCLUSIONS:

*Path Pascal Testbed Approach is Feasible.

*Extensions to Pascal:

Clean Interaction.

Straightforward Implementation.

Small Additions to Run-Time System required for PDP-11.

*Mechanisms Suitable for Block-Structured Languages.

Figure 6

32

8
VERIFIABLE PASCAL

Sabina H. Saib
General Research Corporation

Verifiable PASCAL contains enhancements to the programming language
PASCAL designed to allow for more extensive error checking than is possible in
PASCAL. The language is implemented in a processor that generates PASCAL.

The extensions include:

0 improved structures which are easier to write and result in
more readable code

0 executable assertions which can be used to report exceptions
during testing and also can be used by a program verifier

l data access restrictions which limit the access rights and
operations on data

a units qualifiers which declare the physical units of variables
thereby making units consistency checking possible.

VPASCAL source programs may be executed identically to PASCAL source
programs after they have been processed by the VPASCAL preprocessor. Functions
of the VPASCAL preprocessor include translation, generation of an enhanced
source-code listing and static module hierarchy report, interface to the Soft-
ware Quality Laboratory (SQLAB) verification tools, and reformatting of VPASCAL
source code for program maintenance. The services implemented include:

1. Translation of all VPASCAL control statements into standard
PASCAL while passing other PASCAL statements ummodified.

2. Indented and annotated listing of the VPASCAL source code.

3. Module hierarchy report and directory showing the static nesting
structure of modules and a directory to the indented listing for
module sections (i.e., heading, LABEL, CONST, TYPE, VAR, and
statement).

4. Assertion statements translated into executable form selectively;
the default is to change assertions into PASCAL comments.

5. Interface file prepared for input to other SQLAB tools, thereby
permitting program verification analysis.

6. Reformatted source code to improve legibility in program main-
tenance.

33

IMPLEMENTATION OF VERIFIABLE PASCAL PREPROCESSOR

Figure 1

VERIFIABLE PASCAL PROCESSOR CAPABILITIES

TRANSLATES VERIFIABLE PASCAL TO STANDARD

PASCAL WITH OPTIONAL EXPANSION FOR

EXECUTABLE ASSERTIONS

TRANSLATES STANDARD PASCAL TO VERIFIABLE

PASCAL

GENERATES INTERFACE FILE (FOR OTHER

SQL TOOLS) WITH ANALYZED TEXT AND SYMBOL

DESCRIPTIONS

GENERATES FORMATTED LISTING, TEXT

DIRECTORY AND MODULE STRUCTURE,

LANGUAGE USAGE

LARGE APPLICATIONS INCLUDE

l PASCAL COMPILER - 10000 LINES -

139 PROCEDURES - 8 LEVELS

0 VERIFIABLE PASCAL PROCESSOR -

6000 LINES - 170 PROCEDURES -

3 LEVELS

VERY EASY TO ADAPT FOR LANGUAGE CHANGES

EASY TO ADAPT FOR'CHANGES IN PROCESSING

REQUIREMENTS

Figure 2

34

HOW VERIFIABLE PASCAL DIFFERS FROM STANDARD PASCAL

CONTROL STRUCTURES WITH UNIOUE TERMINATORS

(IF...END IF, FOR...END FOR)

CONTROL STRUCTURE EXTENSION

(IF...~RIF...ELSE...END IF)

EXECUTABLE ASSERTIONS

(ASSERT, INITIAL, FINAL)

DATA ACCESS CONSTRAINTS

(INPUT. OUTPUT)

PHYSICAL UNITS SPECIFICATION

(UNITS)

TRANSLATION OPTIONS

Figure 3

WHY VERIFIABLE PASCAL

PASCAL ALREADY HAS FEATURES AMENABLE TO VERIFICATION

TYPE CHECKING

CLEAN SYNTAX

CALL CHECKING

PASCAL HAS USEFUL DATA STRUCTURES

RECORD

POINTER

PASCAL COMPILERS ARE BECOMING COMMONLY AVAILABLE

PASCAL IS MISSING SOME FEATURES

AUTOMATICALLY INDENTED LISTINGS

DATA ACCESS RIGHTS

UNITS SPECIFICATIONS

LOGICAL ASSERTIONS

PASCAL ALSO HAS A FEW SYNTAX PROBLEMS

AMBIGUOUS IF STATEMENT

INTEGERS USED FOR BOTH STATEMENT LABELS AND CASE
SELECTION

Figure 4

35

VERIFIABLE PASCAL EXAMPLE

BEGIN (* COUNT COLORS *)
INITIALIZE I c* LOOP
READALPHA (MAME 1 I
WRITELN c ‘1 NAftE a
UHILE NOT EOF DO

lo END OF FILE l I

HAIRa I I

I a REAOALPHA (HAIR)
. WRITELM (L l 8 NlflE I HAIR 1 I
. NjMBERREADf I = Mu~BERREADs + 1 i
, ANS I= FALSE I
. FOR COLOR := BLACK 10 NHIrE DO
. . IF HAIR = COLUMNS t COLOR 1 TUEY
. . . COUNT L COLOR 1 I= CO,uRT L COLOR I + 1 I
. . . ASSERT (COUNT L COLOR 1 * 0 1 AND (COUNr [COLOR I (8 NUHBERREAD 1 1
. . . ANS := TRUE

fMDLF
1 END FOR I
, ASSERT lrNs
. . FAIL
. . . WRItELM (II CARD IN ERROR a ; MAHE , I m , HAIR 1 I

END FArL ;
: ~EADALPHA (NAME 1 I
END HHILE I (* PRINT RESULTS *)
NRITELN I
FOR COLOR := BLACK TO M4ItE DO

MRIfrELN (m F(IR COLOR s , CgLu!ftiS r COLOR i
END FOR I

, rCOuNt fs' , COUNT f COLOR 1 I I

OUTpUtS COUNT)
END J (’ COUNt COLORS 1)

Figure 5

GRAMMAR FOR VERIFIABLE PASCAL IF STATEMENT

<XFSTATEHENT+ =
fIF: <PREDICATE, :THENf <STATEHENTLIST>
‘C -ORIF; <PREDICATE, iTHEN <STATEHENTLISl, I+
[t :ELSE=. <STATEHENTLIST, 1 v VIOE 1
:ENDIFi

Figure 6

36

9

A NEW META ASSEMBLER

K. V. Smith, Z. Jelinski, J. B. Churchwell, and S. Park
McDonnell Douglas Astronautics Company-West . . *

This paper describes major improvemehts to the existing Meta Assembler
in order to provide a generalized system for the assembly of computer programs
for target machines. The system is host portable and target reconfigurable.
The improvements provide a user-oriented syntax definition capability. This
is accomplished by adding an assembly language translator which allows a
user to describe any assembly language syntax in a meta language. A generalized
linkage editor is developed to provide a flexible tool for the user to link
assembled programs and make changes, modifications and corrections to individual
modules without the necessity of reassembly of the whole program each time.

The concept of the Meta Assembler originated at NASA MSFC some six years
ago and over the last several years the system was developed and applied to a
number of hosts and target machines. The idea was to have a software develop-
ment tool resident on a host machine to prepare programs for a number of target
machines thus saving assembler development costs for each of the targets.

In spite of its usefulness, the system had some serious shortcomings
namely the Meta Assembler used a language independent syntax for directives
(pseudo ops), macros and labels because these features could differ greatly
from one assembly language to another. For this reason, existing assembly
language programs had to either have the source for these differences rewritten
or a syntax preprocessor had to be written to change them.

NASA has therefore sponsored a major enhancement to the Meta Assembler.
The new Meta Assembler will now include a user oriented syntax definition
capability. This state of the art technique includes the assembly language
definition using a meta language. A statement in the meta language may define
user types, parameters, table entries, target machine characteristics,
assembler language symbols, semantic functions and comments. The meta language
definition is processed by the meta language processor, ALLDEF,building a "dic-
tionary" which provides the basis for the assembly process. A generalized parser-
ALLTRAN will complete the translation process by performing the alternative first
pass of the cross assembly. The output of the generalized parser will be an
intermediate language (IL) data set such that the existing second pass
of the Meta Assembler can complete the cross assembly by converting the IL into
the object data file and generate a program listing as shown in Figure 1. A
second enhancement task is to construct a Generalized Linkage Editor which is a
multi-function utility designed to aid the Meta Assembler user in the creation
and maintenance of software systems built from Meta Assembler formatted object
modules. The result of this effort will be a single Meta Assembler program and
a Linkage Editor program which operate in the environment of a large scale com-
puter and support software development for flight and ground checkout computers.

37

L

META ASSEMBLER CONFIGURATION

“SER ORIENTEDSYNTAX OEFINITION EXTENSION

T

SYNTAX
OEFlNlTlON -

META
b LANGVAGE

PROCESSOR

SEMANTIC
DEFINITION -

Figure 1

CURRENT META ASSEMBLER

ALLDEF PROCESSOR
A ~~ LLOEF AssEMsL .ER
PI ROCESSOR OlCTlON ARY

r----- _---
--- 1

Figure 2

38

-

ALLTRAN PROCESSOR

f-J 2c-l

PARSER
I I I I

II \

Figure 3

FLOW THROUGH THE GENERALIZED LINKAGE EDITOR

39

A UNIVERSAL FLOWCHARTER

J. Rood, T. To, and D. Hare1
Higher Order Software, Inc.

10

A Universal Flowcharter has 'been developed for the MUST system [l]: The Flowcharter was
specified in [2] using the.HOS control-tree specification language (c.f. [3]) and has been
implemented in the PASCAL programming language. Given a description of an input programming
language grammar, the source code of a program written in that language and a partial sem-
antic description of the language, the Flowcharter acts as a graphic documentation tool
for that program. Versions using a HAL/S grammar and a PASCAL grammar are currently running
on the MUST system. Two types of output modes are available: line-printer output and
CALCOMP plotter output.

Instead of control flow being represented by lines that loop back on themselves at certain
points, the output of the Flowcharter has a tree format appropriate for representing the
control flow in a structured program.

The algorithm used by the Flowcharter (see [S]) is new in the sense that the syntactic
analysis performed makes use of extensive semantic information too. The description of the
input programming language granunar is augmented for each production rule. in the grammar with
a semantic rule which describes the relevant semantic contents of the corresponding syn-
tactic construct. Thus, for example, corresponding to a syntactic rule for the standard
IF . ..THEN.. -ELSE statement is the semantic information which specifies that this is a
conditional statement and is to be plotted accordingly. The Flowcharter performs an
LR(l) bottom-up parse on the input program, gathering the semantic information as it goes
along. Control-flow information is retained by substituting parts of the input program
into standard "templates." The decisions as to exactly which type of template and in
which form the substitutions are carried out, depends on the accumulated semantic infor-
mation. Nested substitutions of the templates result in a tree-representation of the
program which is used to drive the plotting (or printing) of the Flowcharter output.
Seven types of templates are currently used, corresponding to seven basic control-flow
structures: block statements, conditional statements, iterative statements, concurrent
statements, non-deterministic choice statements, and procedure declarations pee figures].

Other semantic information, including the names of variables defined locally to a pro-
cedure, those assigned in a procedure, those referenced in a procedure, and which pro-
cedure calls what other procedures, is collected at each production. At the end of the
parsing, these data are collated and a set of "concordances," one for each procedure,
is produced. The concordance of a procedure is printed after its control-flow structure
is plotted.

The plotting/printing is basically driven by the templates. For each specific type of
template, a routine is called to handle the corresponding construction. Nested templates
are printed/plotted in indented columns so that the control flow of the program will appear
explicitly. In addition, many parameters, such as the number of columns to be printed/
plotted on a page, the choice of a long or short concordance, and detail tailoring of
printing/plotting formats can be specified by the user.

REFERENCES

1. Straeter, T.; Foudriat, E., and Will, R.: MUST - An Integrated System of Support Tools for
Research Flight Software Engineering. A Collection of Technical Papers, AIAA/NASA/IEEE/ACM
Computers in Aerospace Conference, Los Angeles, CA, Nov. 1977.

2. Harel, D.; and Pankiewicz, R.: A Universal Flowcharter. TR-11, Higher Order Software,
Inc., Nov. 1977.

3. Hamilton, M.; and Zeldin, S.: AXES Syntax Description. TR-4, Higher Order Software, Inc.,
Dec. 1976.
~-. .- -.
*Number in brackets indicates reference.

41

flowchart = flowcharter(prog; tables,w)

flowchart = plot(tree, concordance) (tree, concordance) = analysis(prog,tables,w)

Figure 1

Though simple to read, structured design diagrams

offer the fvllowIng advantages;

Clear presentation of the block structure

and levels of nesting in a program,

Full illustration of the decision structure

and flow of control in a program.

Comprehensive tabulation of the scope of

variables and functional and data depen-

dencies amonn modules.

Automated documentation of programs to promote

standardization and expediate verification,

Figure 2

42

FLOWCHARTER SPECIFICATION

0 HOS .methodology

0 Specification language (AXES)

0 Equivalent control map representation

l Separates specification from implementation

w Algorithm specified was free of serious problems

w Algorithm based on well developed theory of parsing

w Use of embedded metasymbols in program text

w Algorithm, specified to receive variable programming

language definitions as input

Figure 3

FLOWCHARTER IMPLEMENTATION FLOWCHARTER IMPLEMENTATION
1. Analysis

Flowcharter (FC) parses input

text using LR(l) grammar
0

2. Plot

FC printed output is naturally

represented by a tree

Analysis is driven by a set of

input tables BNF, "BSF", etc.
w Plot uses recursive procedures

to go from linear represen-

tation to tree representation
Each production rule has a

semantic template associated

with it
0 Tree representation used to

drive printing in real time

Each parsing reduction substitutes w User parameters control output
text into template format

Final output of analysis is linear w
program text with embedded metasymbols

"Concordance" contains symbol

reference information

Figure 4

43

l

.I..**.**.*******.*.

l .*. . .

. I * .

l l .***.l.*l*,*..**** w?,TELH .

.

.**.*
. REPD , HbL3BJ l

. ,RI
l :

. .

.**.*.*.......***...

I

l

I

l

1

:

l

:

:

l

:

:

. .

Pigure 5

44

11
THE APPLICATION OF SOFTWARE ENGINEERING TECHNIQUES TO THE

DESIGN OF RELATIVELY MACHINE-INDEPENDENT CODE GENERATORS*

Robert E. Noonan
College of William and Mary

Patricia Timpanaro
Computer Sciences Corporation

A serious problem in providing high level language support for embedded
computer systems is the ability to construct code generators for these machines
quickly, cheaply, and reliably. At the current time, HAL/S is the NASA stand-
ard programming language for flight software. The first phase of the HAL/S
compiler produces an intermediate code called HALMAT, which is basically in the
form of triples. A cross-compiler for HAL/S can be constructed by combining
the first phase of the compiler with a HALMAT-to-machine-language translator.
The problem is to build these code generators so that as much of the code gen-
erator as possible is reusable in moving from one machine to another.

The research undertaken was to apply the techniques of software engineering
to the design of such code generators. The software design methodologies used
included: the Jackson design methodology, hierarchical machine design, infor-
mation hiding, composite design, and iterative enhancement.

The initial design combined the notions of information hiding and hierar-
chial machine design in such a way that each level of the design tries to hide
some design decision from the levels above it. Specifically, this approach was
applied to hide the details of the architecture of the machine; that is, two
one-address, single accumulator machines would have large portions of the code
generator identical. Jackson's methodology was used for the design of the
input (HALMAT) routines. A complete implementation of a minimal HAL subset was
implemented. As additional features were implemented, the overall design and
modularity of the code generator was reviewed and improved.

The current design (essentially, the second iteration) consists of a two
phase mapping. First, HAIMAT is translated to a hypothetical, machine language
known as 7UP; this machine has a single accumulator, no index register, and
one-address instructions. The second phase maps 7UF to machine language, in
our case, an Intel 8080.

Most of the effort-resides in the HALMAT to 7UP translation. This process
need only be done once for all machines of similar architecture. In this case,
only the 7UP to machine code translator needs to be rewritten.

At the current time, research is concentrating on the development of a
software tool to simplify the complex case analysis needed to generate good
code. This has resulted in the development of a non-procedural, problem-
oriented programming language called CGGL (Code Generator Generator Language).
The output from a CGGL compilation is a PASCAL program for generating machine
code from an intermediate code. Preliminary results from the use of this tool
are very encouraging.

*This work performed under NASA contracts NAS l-14972 and NAS l-14900.

45

HAL Compilation System

Figure 1

CODGEN

TEMkATE I \ \ 8080

HALMAT
SUPPORT

8080
SUPPORT SUPPORT

Logical Structure of the Code Generator
Figure 2

46

-

Generator 5 1 11
Code Genera&o-r 311 3 211
Miscellaneous_
Template 2 3 1 1 1 ~~
7UPAdd~ress. Manager 2 2 1

Fanout of Module Classes

Figure 3

Notation: ACC = accumulator PC = program counter
EA = effective address CC..;) = contents of . . .

Opcode

0

1

3

4
6
7
8

11

18
19
20

Mneumonic

STORE

LOAD

JFALSE

CALL

RETURN

ADD

CNEQ
SUBSCR

SAVE ADDR -
LABEL

Interpretation

C(ACC) + C(EA)

C(EA) + C(ACC)

EA + C(PC)

if C(ACC) = false then EA + C(PC) - ~-
subroutine call

return from a subroutine

C(ACC) + C(EA) + C(ACC)

(if C(ACC) # C(EA) then true else false) -+ C(ACC) - ----
C(ACC) + EA + C(ACC)

C(ACC) are saved in an address temporary

associate the PC with the address field

Sample 7vp Operations

Figure 4

47

HAL/s A =A+l;

HALMAT Operation Operand 1
IADD =T,5
IASGN VAC,*-1

Operation
LOAD
ADD
STORE

Given: SYT Table

2: .".

HALMAT

Operand 2
LIT,3
SYT,5

Tag Entry
SYT 5
LIT 3
SYT 5

Sample Translation to 7W

Figure 5

LIT Table

41: .f.

I CGGL
>I

Possible Uses of CGGL

Figure 6

48

12
AN AVIONICS SOFTWARE DEVELOPMENT EXPERIENCE

L. C. Klos
General Dynamics Corporation

The Fire Control Computer on the USAF F-16 aircraft provided the opportu-
nity and requirement for a new avionics software development program. The Fire
Control Computer provides weapon computations, pilot interface, and system
integration functions for the avionics system. The computer is required to
manage an external data bus and support real-time multiprogrammed applications
at various execution rates. It is programmed in the J3B-2 dialect of the
JOVIAL language under stringent memory and execution time usage restrictions.

The presentation covers the impact which these constraints had upon the
developing software and upon the tools which were used to support that develop-
ment. The tools used include a graphical aid to software partitioning, an
interface management data base, an interface data base processor which auto-
matically generates JOVIAL common data areas, a source code indenter, a stand-
ards checker, an IBM 370 host computer debug facility, a JOVIAL flowcharter,
configuration management procedures with automated support, and a hot-bench
dynamic test station for flight simulation and functional checkout. These
individual tools met with varying degrees of success and required varying
degrees of effort in implementation. Directed flowgraphs and associated com-
puterized interface management for example, were relatively difficult to use
but were judged to be worthwhile and successful. Use of these techniques
materially aided partitioning and structuring of the software in the design
stages and helped to reduce implementation and checkout time. The hot-bench
dynamic test station and other laboratory facilities were also quite successful.
Real-time simulation of the aircrafts external environment and pilot interaction
with the simulated system allowed realistic tests of the integrated software
in a controlled and observable environment. The standard module option/host
debug facility, however, required significant effort in use but was much less
successful. This facility allowed modules to be written in a standard form
with all input and output data provided as formal parameters in the module
calling sequence to facilitate checkout on the IBM 370 host computer. A later
step converted selected formal arguments into common data area parameters for
implementation efficiency.

The presentation also covers the apparent future of avionics software from
a tool requirement viewpoint. The proliferation of microprocessors into avion-
ics causes problems in communication and execution management, as well as in
maintainability. The tools used on the current F-16 program in most respects
will be suitable for future systems. Partitioning of software and interface
management will become increasingly important as avionics systems become more
integrated and computerized, Both totally software and hot-bench simulations
will find increasing use in the modeling and testing of candidate system
architectures.

49

I I I

SYSTEMS INTEGRATION LABORATORY (SIL)

l THE SlL CONTAINS ACTUAL AVIONICS SYSTEMS HARDWARE IN A MINICOMPUTER SUPPORTED ENVIRONMENT.
SPEClFlC SYSTEMS AN0 CAPABILITIES PROVIOEO ARE:

. OVNAMICS TEST STATION lOTSI

- HARkIS COMPUTER BASED SIMULATION
OF AIRCRAFT AN0 ENVIRONMENT

-ACTUAL AVIONICS HAROWARE IS
EXERCISED

- REAL-TIME INTERFACE DATA RECORDING
ISPROVIOEG

. AVIONICS EGUIPMENT BAY (AEBI

- SlMPLlFlEO AlRCRAFT SIMULATION USING AIRCRAFT COCKPIT SECTION

-EVALUATES AVIONICS IN ACTUAL SPACE, ELECTRICAL AND COOLING ENVIRONMENT

- EVALUATESSOFTWARE WIT” REAL RAOAR AN0 OPERATOR CONSTRAINTS

. REAL-TIME MONITOR UNIT (RTMUI

- PROVIDES OATA RECORDING OF INTERNAL COMPUTER PARAMETERS

- UNIOUELV IDENTIFIES DATA AND TIME OF RECOROING

Figure 1

TRENDS IN AVIONICS SOFTWARE ARCHITECTURE

THE 60’S P l BIG CENTRAL COMPUTER COMPLEXES

. OO.A,.L SYSTEMS

. ANALOG CONVERSION

. EACH SUBSYSTEM HAS A PROCESSOR

l OIGITAL MULTIPLEX COMMUNICATIONS

l CENTRAL COMPUTER PROVIDESWEAPON
LIELIVERY AN0 SYSTEM INTEGRATION

THE FUTURE (?I l HIERARCHICAL COMPUTING NETWORKS GLOBAL MUX BUS
I I I I

50

F-16 ARCHITECTURE OVERVIEW

NAVIGATION
l Air/Air Mirrilar

FIRE-CONTROL
COMPUTER

l Air/Surface Attack
l LCOS l+nncry

- l Ensrpy Mnnaemnnt

+,
RAOAR

HEAD-UP
DISPLAY

RADAR/E-O -’
OISPLAY

l Multiplex Control

lntsrfacs Via
MlL.ST0.1553
Dull Redundant
Multiplex Bus

OTHER .
SYSTEMS

Figure 3

F-16 SOFTWARE DEVELOPMENT CONTEXT

zzEil~~l--l7

DETAIL DESIGN DATA AND COMPUTER

PRODUCT DESCRIPTION INCLUDING
INTERFACE LISTS AND PARTITIDNII’-

Figure 4

51

TOOLS USED ,IN THE DEVELOPMENT

TOOL OESCRIPTION

1 . ATMS 1 WORD PROCESSING SYSTEM

. DIRECTED FLOW GRAPHS 1 GRAPHICAL OESIGN TECHNIQUE 1 HIGH* 1
l SYOIM 1 COMPUTERIZED INTERFACE MANAGEMENT 1 HIGH 1

l JET JOVIAL EDIT AN0 TIDY
- Source Formatting
- Source Editing
-Standard Module Option/Host Debug Facility ..~

STRUCTURED PROGRAMMING EVALUATION AN0
AUTOFLDW ROUTINE

- Structured Programming Standards Checker
- Flowhart Generation

HIGH
MED
LOW* -

LOW
HIGH

l AWIP

CONFIGURATION MANAGEMENT SYSTEM

. JOVIAL 538-Z HIGH ORDER PROGRAMMING LANGUAGE

. OTS

l AEB
. RTMU

l CDMPALL

REAL-TIME DATA RECORDING

DIRECTED FLOWGRAPH WITH INTERFACE

NAVIGATION SUPPORT COMPONENT - INTERFACE SPECIFICATION
OUTPUT DATA SIGNALS

SIGNAL LEL TYP HZ BLOCK SIGNALNAME
RH”” F cl” N”6 RH” Y .._. - - .- - - -
RHO2 i 50 NS05 RHO 7.

“BEG CETOP ARRAY

ARRAY CETOP 3 3

CETOPXX
CETOPXY
CETOPXZ
CETOPYX
CETOPYY
CETOPYZ
CETOPZX
CETOPZY
CETOPZZ

NS06
NS06
NS06
NS06
NS116
NS06
NS06
NS06
NS06

COS CXX-EARTH TO PLAT
COS CXY-EARTH TO PLAT
COS CXZ-EARTH TO PLAT
COS CYX-EARTH TO PLAT
COS CYY-EARTH TO PLAT
COS CYZ-EARTH TO PLAT
COS CZX-EARTH TO PLAT
COS CZY-EARTH TO PLAT
COS CZZ-EARTH TO PLAT

“EN0 CETOP \
WNOLNGTK F 6 NSOl WIN0 LONGTRACK
WNOCRSTK F 6 NS07 WIN0 CROSSTRACK
FN F 6 NS07 LOCAL GRAVITY

GNOTRK A0 50 NS09 GRObNO TRACK

GNOSPO F 2 NSlO GROUNO SPEEO

TASXF F 25 NS13 TRUEAIRSPEEO FILTEREO X
TASYF
TASZF L

25 NSl3 TRUE AIRSPEEO FILTEREO Y
25 NS13 TRUE AIRSPEED FILTEREO Z

OVALUE F 6 NS14 ‘O’VALUE

FALTPMAZ A0 50 NS15 FLIGHTPATH MARKER AZIMUTH

FALTPMEL A0 50 NSl6 FLIGHT PATH MARKER ELEVATION

Figure 6

52

13
FUNCTIONAL SIMULATION OF SPACE SHUTTLE FLIGHT PROGRAMS

Arra Avakian
Intermetrics, Inc.

HAL/S is the computer programming language chosen by NASA for the Space
Shuttle project. It was designed for space applications, and includes such
features as vector-matrix arithmetic and real-time process control statements.
Within the Shuttle programming context, HAL/S programs can execute in at least
two distinct simulation modes as well as actual execution on a flight computer.
The simulation mode closest to the flight computer involves compilation using
the flight computer compiler (HAL/S-FC) followed by simulation on an interpre-
tive computer simulator CICS). Although a very close reproduction is attained,
the usefulness of the ICS mode of simulation is limited by its high CPU costs
to small scale simulations and compiler checkout. Another mode of simulation
is available which operates at the level of a HAL/S statement. Terms used to
describe this mode are "functional simulation" (FSIM) or "statement level
simulation" (SLS). Whereas the smallest unit simulated without environmental
interaction in the ICS mode is one machine instruction, the smallest unit in
FSIM mode is one HAL/S statement. FSIM is not a bit-for-bit simulation, so it
operates with much greater efficiency. However, its accuracy is good enough so
that almost all of the flight software algorithm checkout is performed under
this mode of simulation.

FSIFI involves the use of another compiler with a common language analysis
phase but a separate code generator, the HA&L/S-360 compiler. Although the
HAL/S-360 compiler generates 360 machine code, allowing execution to proceed at
the full rate of the host 360/370 machine, interaction with a simulation
monitor can occur at any HAL/S statement in a manner analogous to an ICS.
Pseudo-real time can be maintained, so that interactions may occur at any de-
sired time as well. A model of the Flight Computer Operating System (FCOS)
is supplied by the compiler system, allowing full use of the real-time process
control features of the language. The total effect is to simulate execution
of the same HAL/S program compiled for and executing on the real flight com-
puter under control.of its operating system.

The key to the simulation monitor's control of HAL/S execution at the
statement level is the "hook" instruction inserted between each statement by
the HAL/S compiler. The "hook" instruction causes control to pass to a state-
ment processor routine. This routine gives control to the monitor whenever
conditions occur which have been previously established. Such conditions may
be the execution of a specified ("hot") statement, or the arrival of a speci-
fied pseudo-time. The statement processor advances the pseudo-time by a time
cost computed by the compiler for each statement.

53

HAL/S-360 COMPILER SYSTEM OPERATION

Compilation & Stand-Alone Execution ------------------------------------.

DECK
<*,

v
RUNTIME OSNS
LIBRARY ’ w LINK

ED ITOR
u

-r
I
I
I
I

t

I
I
I
I

Diagnostic FS IM Execution -------------------------~~~~~

1 DIAGNOSTIC LIBRARY +

-i-
I

) FSIM
EXECUTION * f:r

t 1
A

4
USER’ S

/ I10 v
USER’S + DUMPS +
DIAGNOSTIC AND
REQUESTS TRACES

L

KEY -

0 Normal Compiler Operation

* Compiler FSIM Support

+ Runtime FSIM Support

+ Diagnostic FSIM Monitor Operation

USER’S
I10

Figure 1

FSIM SUPPORT FUNCTIONS
OBJECT DECK FCOS MODEL +
i

Code To Call -
l Schedule

Scheduler
l Wait -

l Cancel
STMT HOOK * * l Terminate
I

Code for if
. Update
l Etc.

;;J1T GooK * l Advance
: Pseudo

TIMING TABLE
Clock

B t

ACTION
l Detect Time

IME USAGE
Action

i
l Detect Y-lol~

_ 103 D
Statement

l Record

RUNTIME

3lM +
NTERFACE
ixits to
3 IM Monitor:

l Time
l 88Hot” Stmt
l FCOS

l Begin
l End

Iall from
5 IM Monitor:

l Set Time
l Signal
l Event
l New Stmt
l Print
l Message
l Etc.

FSIM
-Man itor

, ,
COMPILER SUPPORT KEY -

c3 Normal Compiler Operation

* Compiler FSIM Support

+ Runtime FSIM Support

+ Diagnostic FSIM Monitor Operation

Figure 2

DYNAMIC STATEMENT PROCESSOR

EXECUTING
HAL
CODE I . . . SELECTED

FAST
BALR 14 12 JERSIONS
DC H' iSN'

f , ,--

OVERLAY lN 360
MEMORY . . 0

IROUTINE 1
I

Figure 3

\ /

. .

256 VERSIONS
IN STATEMENT
PROCESSOR
LIBRARY ,

14

PROVE

A Tool For Software Verification

Randall J. Varga
The Singer Company
Kearfott Division

ABSTRACT

PROgram Verification Equipment (PROVE) is a dynamic simulator
used at Singer-Kearfott in the development of Advanced Avionic
Software Systems. It is currently being used in the verification
of the calibration and alignment algorithms for the Space Shuttle
Inertial Measurement Unit (IMU).

PROVE was developed to provide a low cost controlled environment
for the verification of calibration algorithms and associated
systems. The PROVE simulator is a significant improvement over
previous techniques which were hampered by project unique
hardware which interfaced the simulator with the operational
system.

INTRODUCTION

As today's processors become more powerful, advanced airborne
avionic systems are required to perform more tasks at faster
rates then ever before. These additional functions mandate that
software systems become increasingly large and complex, requiring
more extensive checkout in order to verify satisfactory
performance of their tasks during all operational phases. In
fact, the complexity of the checkout required to verify the
software increases exponentially with the size of the program
(see figure 1). Thus finding an automatic timely method of
verifying software is also an exponentially growing problem.

At Singer-Kearfott software is verified by a multiple step
process. First, the entire software package is designed in a Top
Down Structured manner. This allows for a cohesive
interrelationship of modules. This is then followed by extensive
desk debugging of the individule modules. This includes static
simulation on a large scale general purpose computer system.
Considering the typical iteration rate for avionic systems
(50-200Hzj, and the length of execution (upwards to 12 hours) the

57

cost of fully simulating the software on the large scale computer
becomes increasingly high. In light of the cost factor, software
modules should not be fully checked out by this method. The next
step in verification prior to flight testing of the software
package is dynamic simulation of the entire system. To
facilitate this ,dynamic checkout a series of simulation systems
have been developed by Singer-Kearfott over the years. These
include a Digital Inertial Measurement Unit Dynamic Simulator
(DIMUDS) (ref l), Communication And Navigation Dynamic Simulator
(COMMANDS) (ref 2), as well as PROgram Verification Equipment
(PROVE).

OBJECTIVES OF PROVE

In designing and building PROVE, several objectives were
established. These objectives were:

(1) The simulation must run in a real time environment.
This requirement detects timing unique errors in the
software modules. The types of errors which are isolated by
this requirement are subroutine re-entrancy, cycle
interference, and system time overload.

(2) The entire software package must be tested.
The necessity for this requirement is obvious. It mandates
that every software module be fully verified prior to final
system generation. Thus it prevents untested software going
undetected merely because it is not needed for simulation
checkout.

3) The interface format must be the same as with the actual
hardware.

This requires the full verification of all sensor unique
routines. All reformatting and scaling of the sensor data
are performed and verified. It also alleviates the
necessity of generating simulator unique interface routines
merely because the interface format is different than the '
real hardware.

(4) The simulator must be cost effective to operate.
This is a double requirement. First the simulator must be
inexpensive to build, operate, and modify. In addition, it
should use commercial equipment as much as possible,
eliminating the need for specialized test equipment and
hardware. Second, simulation must not require an excessive
amount of time to perform. That is, if due to model
constraints, the simulator cannot be made to run in real
time every effort must be made to minimize the excess of
real time.

58

(5) The simulator must accurately model the actual hardware.
This requires that given the same output from the
operational system the simulator and the hardware must
produce comparable results. There must be nothing known
that the simulator does not model. Conversly there must be
nothing modeled which does not occur in the actual hardware.

To implement the PROVE concept Singer-Kearfott has chosen to use
the Hewlett Packard 2100 mini computer. A significant factor in
making this selection is the fact that the operational computer
to which the PROVE was initially connected was also a HP2100
computer. This significantly simpiifies the interfacing problem.
The current implementation is shown in figure 2.

ADVANTAGES TO PROVE

Simulation approaches similar in nature to PROVE have been used
at Singer-Kearfott for many years with great success. PROVE
itself is being used on several projects currently under
development, the most notable of which is the verification of the
Space Shuttle IMU calibration algorithms. These projects have
enjoyed many advantages over those that did not use PROVE. Some
of these are described below:

Verification of an operational software system employing PROVE,
accuratly simulates the environment in which the system must
operate. The digital interface between the operational system
and the sensor hardware is modeled to be consistant with the
actual hardware interface. This includes the data which are
transmitted as well as their format. This reproduction of the
interface allows the operational system to be fully verified.
This not only includes the data reduction portion of the system
but also the reformatting of the interface data which are
required when the actual hardware is employed. In addition the
software unique to the simulator is for the most part
non-existant. The only module required is that which actually
performs I/O between the simulator and the operational software

4 system. With the exception of the true I/O routine which is
checked out by means of static simulation and actual hardware
runs, the entire operational software system has been verified
before ever having been run with the actual sensor hardware.

A further advantage of employing PROVE is that the entire
software system is dynamically verified in a real time
environment. This is possible because the PROVE creates the real
time environment in which the actual system will operate. This
is accomplished by employing a real-time clock-in the PROVE
computer as a time referance. After the prescribed amount of
time has elapsed the PROVE software causes an interrupt to occur
in the operational computer by means of a dedicated I/O

59

instruction. This interrupt is seen by the operational system as
if originating in the actual sensor hardware and is treated in
exactly,the same manner. Thus the real-time features of the
operational system are preserved and verified.

Another major advantage in using PROVE is that it is a cost
effective means of software verification. There are.several
factors about the PROVE which make it cost effective. Among
these is that all the hardware components which comprise PROVE
are commercially available. This allows for the construction of
PROVE in a timely fashion. There is no long lead time required
for hardware development. The design costs of .the system are
greatly reduced since there are no unique hardware modules which
must be designed and built.

As an illustrative example, let us examine the problems
encountered by a typical project that did not employ the PROVE
concept of software verification. This project's requirements
were to control a sensor, process the data, and communicate with
another computer. The interface with the other computer was over
a parallel data line. For software verification purposes it was
decided to use a specially designed hardware interface module
(see figure 3) . This particular module had a lead time near
that of the system development time. The obvious result was that
the intercomputer communication software could not be verified
until near the end of the project. In addition since the
communication requirement was crucial to the system, there was
strong schedule pressure to shorten the development time of the
hardware. As a result of these problems and pressures the module
was delivered .late and required the design engineer to maintain
the equipment. Further the module proved to be unreliable and
frequently failed. The net result was that the
significantly

project
increased both cost and schedule

Similar projects using the PROVE were delivered on
projections.

time and at
projected cost.

Since PROVE is built from commercially available equipment, there
is no need to train personnel in it's maintainence since this can
be readily obtained from the component manufacturers by means of
service contracts. Another major factor in making PROVE cost
effective is that if the components used in assembling the system
are purchased, then there is only the initial outlay of funds to
purchase the equipment and
equipment

no periodic rental charges. The

recurring
would be continuously available for project use without
cost.

Since the
available

PROVE system has been assembled
components it

using commercially
was decided not -I ~.- . _I to employ simulator -. unique interrace naraware. The communication

simulator
between

and
the

the operational
standard I/O interface cards

system is carried out over the
available from the manufacturer.

This allows the I/O interface to be completely modified by simply

60

changing the software interface routines. This makes the PROVE
useable to other projects without having to reconfigure hardware
modules. It also reduces the length of time required to change
from one project to another. Project change is no more complex
than reloading the computer and connecting another cable to the
interface card (approximatly 5 minutes).

Since the initial development of PROVE several enhancements and
improvements have been made to the system. The most notable of
these enhancements is the inclusion of failure simulation. It
should be noted that in order to verify failure detection
software using the end item a mechanism of artifically inducing
failures at the system level is required. This is generally a
difficult task and often requires hardware modification. This is
accomplished in the PROVE computer by modifying the output as
computed by the sensor model in a prescribed manner. This was
mechanized by adding routines between the data formatting
routines and the I/O routine (see figure 4). The setting of
these failures is under operator control from the system input
device. The operator selects the error he wishes to simulate and
the time duration of the failure. The system then perturbs the
output for the selected length of time. Since the modeling of
the failure occurs after the formatting of the output data, there
is no feedback to the sensor model and therefore no modification
of the system output after the failure simulation is finished.
In this manner intermittant hardware errors and hardware noise
are simulated. This therefore verifies the error recovery
modules in the system.

PROBLEMS WITH SPACE SHUTTLE PROVE

PROVE has been used at Singer-Kearfott for several with
good results.

years
Thus

encountered.
far there have been no conceptual problems

The only problem areas which have been encountered
were peculiar to the particular These were

-4 mainly
implementation.

limitations imposed by the architecture of the 9

-.;h
mini-computer used.
studies

As a result of these problems some trade off
were performed on the design criteria for the particular

implementaion. Because of these studies, certain design goals
-_ were relaxed in

timely fashion.
order to produce a useable working system in a

One of the first problems faced by the designers was the need for
high precision in the computations. Because of the iteration
rate and the length of execution of the
determined that

programs it was
the mini-computer floating point format was not

adequate. Errors in the computation due solely to round off were
deemed unacceptable. For this reason it was d'etermined that
certain critical sections of the sensor model had to be written
in extended precision arithmetic. This had the disadvantage of

61

both increasing size and lengthing the execution time of the
model. The increase in memory was minor (less than 100 words of
memory). However the increase in execution time had a more
significant impact on the system. Because of the increased
execution time the simulator was unable to be made to run in real
time. In fact the simulator has been forced to run 25% slower
than real time.

Since the simulator has been forced to run slower than real time,
certain error conditions may remain untested. The primary
condition which may go undetected is system time overload. This
is because the operational system is allowed 25% additional time
to complete it's assigned tasks. Therefore to detect a time
overload condi.tion in the normal sense the system would have to
be greater then 25% overloaded. This problem has been alleviated
by not permitting the time loading of the operational system to
increase above 80%.

Another problem resulting from the slower execution of the
simulator is the fact that the operational system will not be
interrupted at the same point during simulation as when running
with the actual hardware. This may allow non-interruptable
routines to go undetected. The possibility of this type of error
remaining in the delivered system was eliminated because the
final step in software verification always includes full
verification testing with the actual hardware, and at that point
the error would be detected.

FUTURE OF PROVE

PROVE has proven itself to be an invaluable too1 for software
verification. It has allowed for the controlled and detailed
testing of complex software systems without having to resort to
costly flight testing. There are however certain areas of
improvement which can be made to the system. The most obvious
improvement is the decreasing of the execution time of the sensor
model. This it appears can be accomplished in a fairly straight
forward manner by microcoding selected fundamental functions of
the model. The types of functions which would be microcoded are
matrix multiply and sine/cosine functions. This would not impact
the ability to make future improvements to the system since only
the most fundamental functions would be selected for microcode.

62

REFERENCES

1. Frisina, J. N.: Dynamic Simulation via Minicomputers. Proceed-
ings of 7th Annual Pittsburg Conference on Modularity and Sim-
ulation, Apr. 1977, p. 477.

2. Frisina, J. N.; Steele, W. J.; and Schlenger, J. I.: Dynamic
Simulation of a Multi-Sensor Communication and Navigation
System. Proceedings of NATO AGARD Conference on Navigation
and Gtiidance, May 1978.

Figure 1

63

d
PmVE

COWPUTER

% t.
WIPE

TTY
READER

J +,
OPERATIONAL

- COWPUTER

1) 1

TTY LINE
PRINTER

Figure 2

Figure 3

SENSOR "ODEL

I

FAILURE FAILURE

SINuLA*E

TO OPEMTIONAL COHPUTER

Figure 4

64

15
INTERPLANETARY SPACECRAFT COMPUTER SOFTWARE TEST

AND VALIDATION TOOLS*

Daniel E. Erickson
Jet Propulsion Laboratory

Several characteristics of unmanned interplanetary space missions impose
unique requirements upon the embedded computer systems which control the
spacecraft and the tools used to validate the programming of these computers.
The long mission duration creates a need for reprogramming after launch to
accommodate evolving scientific requirements, a better understanding of the
environment, or spacecraft anomalies. The stringent mass/volume/power
limitations, coupled with a desire to maximize the information return man-
dates efficient, assembly language coding and detailed simulations of com-
puter execution through the entire mission. The simulation must be much
faster than real time. This simulation has traditionally been performed in
software on large mainframe. Throughput times and costs which are propor-
tional to the efficiency of the simulation, the number of processors being
simulated, and the activity of each processor have grown due to increased
processor activity. Current Voyager simulation operation is costing $4500
per week.

A hardware accelerated simulation tool (HAST) has been developed for
Voyager. It is in the final stages of acceptance testing and will be phased
into operations following Jupiter Encounter. The major problems which were
solved in the design were the provision of visibility into the execution of
the flight software via memory traces and the achievement of the desired 100
to 1 speedup ratio.

For the Galileo project, no detailed simulator in software is planned.
Simulation of the seven RCA 1802 microprocessors, running in the active state
over 10 percent of the time would be prohibitively expensive. A hardware
accelerated simulation tool is required for software development as well as
software test and command sequence verification. This will require increased
visibility into software execution, dictating a slowdown or suspend mode to

7 give time for the printing of trace data. Furthermore, if significant speed-
up is required (greater than 20 to l), functional simulation of the embedded
software by hardware will be dictated. Some speedup and added visibility
will be achieved by the emulation of the RCA 1802 with AM 2900 bit sliced
logic.

* This work is being conducted at the Jet Propulsion Laboratory of the
California Institute of Technology by agreement with the National
Aeronautics and Space Administration under Contract NAS 7-100.

65

VOYAGER SEQUENCING PROCESS

SCIENCE/ENGINEERING REQUESTS

SEQGEN SEQUENCING ALGORITHMS

SEQUENCE REQUEST MACRO CALLS
7

SEQTRAN MACRO DEFINITIONS

UPLINK COMMAND DATA FOR CCS

ccs EMBEDDED SOFTWARE

t
TIMED COMMANDS FOR
SPACECRAFT SUBSYSTEMS

Figure 1

VOYAGER SPACECRAFT DATA SYSTEM
(SIMPLIFIED)

COMMANDS - PROCESSING *
(IJPL)

I

SUBSYSTEM
(PWR)

TELEMETRY -

Figure 2

OTHER HAST CONSTRAINT CHECKS

l INTERRUPTS DISABLED FOR LONGER THAN 100 msec

. INTERRUPT MISSED DUE TO SLOW PROCESSING

*OUTPUTS TOO CLOSE TOGETHER FOR RECEIVING SUBSYSTEM

. INVALID OUTPUT SEQUENCE

Figure 3

66

VOYAGER SIMULATION REQUIREMENTS

. SIMULATE CCS EXECUTION OF EACH COMMAND SEQUENCE

l MUCH FASTER THAN REAL TIME

l SIMPLE OPERATION

l SAVE/RESTART CAPABILITY

l RESPONSIVE SIMULATION OF INTERFACING SUBSYSTEMS

. CHECK CONSTRAINTS ON USE OF EMBEDDED SOFTWARE

l MEMORY TRACE

. TIME OUT TESTS

l ADAPT TO CHANGES IN CCS SOFTWARE DETECT ERRORS IN CCS SOFTWARE

l DETAILED SIMULATION OF CCS

Figure 4

PROBLEM OF EMBEDDED SOFTWARE VALIDATION
FOR UNMANNED INTER PLANETARY

SPACECRAFT CONTROL

l SPACECRAFT ADAPTABILITY - REQUIRES REPROGRAMMING WITHQUICK
VALIDATION TURN-AROUND

. OPTIMAL USE OF SPACECRAFT RESOURCES - REQUIRES TIGHT CODE -
ASSEMBLY LANGUAGE OR A UNIQUE SPECIAL PURPOSE HIGHER ORDER
LANGUAGE

l CONTROL TASK COMPLEXITY - ELIMINATES THE POSSIBILITY OF
DEVELOPING SUFFICIENT CONFIDENCE IN THE FLIGHT SOFTWARE WITH A
MANAGEABLE SET OF TEST CASES

. SOLUTION - DETAILED MUCH FASTER THAN REAL TIME SIMULATION OF
ALL FLIGHT SEQUENCES - HARDWARE ACCELERATED SIMULATION

Figure 5

HAST TIME ACCELERATION EXPERIENCE

l FASTEST POSSIBLE ACCELERATION

. SLOWEST HARDWARE ACCELERATION

. FASTEST OBSERVED ACCELERATION

l SLOWEST OBSERVED ACCELERATIONS

l DURING CHECKSUM

. DURING UPLINK

l DURING BUSY SEQUENCES

. AVERAGE ACCELERATION FOR PIP ICAL
SEQUENCES (SIMULATION PHASE)

Figure 6

288: 1

2: 1

2:l (106% ACTIVE)

2011 (52ACTIVE)

6Ckl (1.3%ACTIVE)

ItICk1 (0.6% ACTIVE)

67

HAST TIMING CONTROL

.TIMING SIGNAL (2.4 kHz ON SPACECRAFT)

*CONTROLS TIMING ON BOTH THE MlNlCOMPUlER AND THE CCS
EMULATOR

*MAY BE IN ONE OF FOUR STATES:

*REAL TIME (2.4 kHz)

*X2 (4.8 kHz1

*SPEED UP (614.4 kHz)

*INHIBITED

*SPEED UP ONLY ENABLED WHEN

*BOTH CPUS ARE IN WAIT STATE

*BOTH OUTPUT UNITS ARE AVAILABLE

*THE MINICOMPUTER HAS COMPLETED ITS CALCULATIONS

Figure 7

HAST MEMORY TRACE OPTIONS
(5 - EXTRA BITS FOR EACH 18-BIT CCS MEMORY WORD)

l FETCH - IF WORD IS BEING EXECUTED AS AN INSTRUCTION

. READ - IF WORD IS BEING READ AS DATA

. WRITE - IF WORD IS BEING WRITTEN INTO

. WFETCH - IF WORD IS BEING EXECUTED AND MAY CAUSE A WRITE INTO
ANY MEMORY CELL

. INHIBIT - IF THIS WORD IS EXECUTED, DISREGARD ALL OTHER OPTIONS

Figure 8

HARDWARE ACCELERATED SIMULATION TOOL
SIMULATION PHASE

VARIAN 620/F 100 MINICOMPUTER
/

SPECIAL PURPOSE HARDWARE

TIME CONTROLLER
INTERFACE
EXECUTIVE t

I CCS EMULATOR

5 IMULATION
CONTROLLER

I--___

I I I

FDSSIM AACSS IM DTRSIM UPLS IM PWRSIM

Figure 9

68

-

HAS1 SPEEDUP EXAMPLE

EVENTS . 1 PPS INTERRUPT TO CCS AND MINI
l MINI SETS COUNT DOWN TIMER

. COUNT DOWN TIMER INTERRUPT
l MINI INTERRUPTS CCS

CCS ACTIVE I

MINI ACTIVE II

CLOCK nMlullulnnnnnn

ITIME COMPRESSION NOT TO SCALE)

Figure 10

GALILEO HARDWARE ACCELERATED SIMULATION TOOL
HARDWARE CONFIGURATION

COMMERCIAL DATA PROCESSING EQUIPMENT

MINI

SPECIAL PURPOSE
HARDWARE

SHARED
t

SUBSYSTEM
MEMORY

STUBS

MINI SHARED
MEMORY t

SHARED
MEMORY t

CDS
EMULATOR

MINI

(PERIPHERALS NOT SHOWNI

I

Figure 11

GALILEO SIMULATION REQUIREMENTS

l CDS EMBEDDED SOFTWARE DEVELOPMENTITEST

-DETAILED SIMULATIONS OF CDS MODULES

l MEMORY TRACE FUNCTIONS

-BREAKPOINTS

*BUS TRAFFIC MONITORING

-RESPONSIVE SIMULATION OF INTERFACING SUBSYSTEMS

*MISSION OPERATIONS SIMULATION OF COMMAND SEQUENCES

-MUCH FASTER THAN REAL TIME

-SAVE/RESTART CAPABILITY

l SIMPLE OPERATION

l INITIALIZATION FROM SPACECRAFT TELEMETRY

Figure 12

69

16
A SOFTWARE CHANGE DEVELOPMENT LABORATORY

FOR SUPPORTING AN AGGREGATE OF EMBEDDED COMPUTER SYSTEMS

F. H. Kishi
TRW Defense and Space Systems Group

D. R. Corder
Oklahoma City Air Logistics Center

A concept, designated Software Change Development Laboratory (SCDL), is
defined for the purpose of performing operations and support for the aggregate
of Embedd.ed Computer Systems (ECS) assigned to Oklahoma City Air Logistics
Center. The major objectives of SCDL are to:

0 Establish a capability for software change implementation and module/
CPCI verification testing.

0 Provide a basic framework for a multi-system support tool which
encourages standardization and consolidates resources.

l Includewithin the framework a multi-purpose emulation tool which
supportstraining and allows for exhaustive diagnostic probes.

The software change process during the Operations and Support phase of the ECS
life cycle is described, and the range of applicability indicated for the
subject tools. A set of requirements is stated for the tools as they are used
for the individual ECS's as well as across the aggregate of ECS's. A config-
uration for the tool which satisfies the requirements is next selected which
features a simulation processor complex with a set of common processors which
functions as the simulation host processors for each of the Software Test
Stands (Fig. 1). These Software Test Stands consist of the actual or emulated
avionic processor loaded with the operational flight programs during testing.

Within this configuration framework, weapon system software support needs
are examined for the B-52 Weapon System (Fig. 2), Generalized Software Test
Stand (Fig. 3), and the Short Range Attack Missile (Fig. 4). Based on this
analysis a baseline philosophy is established for the simulation processor
complex (Fig. 5), and a proposal is made for an initial configuration of the
SCDL (Fig. 6) to be located at Oklahoma City Air Logistics Center for use in
Operations and Support.

A summary of the important points include: (a) analysis of a set of Weapon
System ECS reveals where commonality requirements can be applied, (b) central-
ized simulation processor complex maximi'zes standardization whiJe promoting mod-
ularity, (c) diagnostic emulation adds multi-system flexibility and supports
training prior to system transfer, and (d) opportunity exists for applying the
integration concepts across systems before individual facilities are established.

71

SOFTWARE TEST STAND 2

SOFTWARE TEST
-
ST AND

\IIIIIIIIIIIIIIlm, GENERALIZED SOFTWARE TEST STAND

TEST STAND 4

Figure 1

I PROCESSOR 1

%

SHP El PERIPHERALS -
f$d5;LATION MVJ;zA L

PROCESSOR TERMINAL +---

Figure 2

72

1
CARD READER 3 ;~~~LAT’oN - INTERFACE -

PROCESSOR - HARDWARE MICROPROGRAMMABLE - COMPUTER

t t t ’

I
I

1 I I I

Figure 3

r -----------mm-__
ENVIRONMENTAL SYSTEM SIMVL*TOR

~ 1 Eyx: 1

L ----------------- J

Figure 4

73

TO STS 3

\

TO STS 4

J
STS 5

STS 6
--

Figure 5

Figure 6

74

TOOLS AND SOFTWARE REQUIREMENTS, DESIGN, AND SPECIFICATIONS

Lt. Cal. Charles John Grewe, Jr.
U.S. Air Force Electronic Systems Division

THE PROCESS

I am almost sure that everyone is familiar with the concept that you
can divide the software development process into distinguishable phases.
At least one way of looking at this division is to consider the phases
as Design, Code, and Test. An estimate of the amount or percent of the
total development effort is that the Design Phase requires about 4576,
Coding requires about 26, and Test requires the remaining 35% of the
effort associated with the software development process. Figure 1 depicts
the areas in which errors in the development process occur. As you can
see, most of the errors occur in the Design Phase or can be attributed
to poor, incorrect, or incomplete design when they are finally discovered.
Of course, as you would expect, errors also occur in the Coding Phase.
Unfortunately, however, errors are generally not discovered until the Test
Phase. The Design Phase in this context does not include the area of
Requirements Development, which I consider s.n entire Phase unto itself.
I will elaborate on this concept later, but first, a few more words on
the error discovery process and the impact it has on the cost of cor-
rection and effectively on the total cost of the software development
project.

THE COST OF ERROR CORRECTION

Error correction is of itself an entire professional category. When
you think of each and every profession in the environment today, a large
portion of the cost and time associated with keeping devices, things, etc.
going is associated with error correction. The military aircraft indus-
try is a good example. How many times do we read about or hear about
recalls necessary to correct an error in design, material, or workmanship.
Millions of dollars are spent correcting errors discovered in systems
(the airplane is also a system), and a large part, in fact a majority,
of the cost is ass'ociated with correcting errors of design. Even worse,
are errors associated with the market place (i.e., the needs or require-
ments) for the system. The curve shown in Figure 2 represents the asso-
ciated higher costs of discovering errors as a function of the passage
of time. Once a product is in production and you discover a design error
(or9 heaven forbid, find that no one wants the product), it is exponen-
tially more expensive to correct or compensate for the mistake. This tool
is true relative to the software development process. Mistakes are made
in developing the requirements for a software system, in designing the
software system, in coding the software system, and even in the testing
(or lack of testing) the software system. So what should and can be done
about it?

75

REQUIREMENTS DEVELOPMENT

I have referred to Requirements Development as a Phase in the soft-
ware development process. This is a generous phase that allows one to
talk about all of the activities associated with trying to understand what
the needs and requirements are for the system or subsystem being developed.
It covers such considerations as what the needs are, who needs them, how
do various people perceive the needs, why are they needed, how do you
write down or otherwise document the requirements for the needs, how do
you analyze the requirements descriptions to be sure the needs (real or
as perceived) were adequately documented, and how do you provide for
tracing the documented needs to the provider of it. I include, as shown
in Figure 3, under this general Phase the more commonly accepted terms
or processes as:

-- Requirements Definition (Needs Determination)
-- Requirements Specification
-- Requirements Analysis
-- Requirements Traceability

The understanding of these terms is as varied as there are other
ways of categorizing the different processes of Requirements Development.
There is probably little hope in considering that a standard could be
agreed on and adhered to in our industry of weapon system and software
subsystem development and acquisition. Therefore, descriptions of these
phrases are short in order to leave room for interpretation.

Requirements Definition is the process of understanding what the needs
of all interested parties are end documenting these needs as written de-
finitions and descriptors.

Requirements Specification is the more formal process of taking the
descriptions of the needs and associating them with a formal structure
(i.e., the format of MIL-STD-490 Type A System Level Specifications),
such that they are presentable to someone else for implementing.

Requirements Analysis is the process of applying various scenarios
to the statements of system requirements to assist in determining if the
specifications are complete, consistent, feasible, have alternative pos-
sible solutions, and are understandable.

Requirements Traceability is the process of documenting where the
stated requirements come from and how they are associated with, or relate
to, other requirements.

Of the papers being presented here today, the first two by Melliar-
Smith of SRI International and E. Rang of Honeywell, Inc. address aspects
of software design snd.verification through the use of formal mathematical
methods and the possible application of three other software development
aids that make it "easy" to verify aspects of the system design. The
next two papers by Paul Scheffer of Martin Marietta Aerospace and Judith
&LOS of Hughes Aircraft Company address the broader scope of software
development to incorporate aspects of requirements development, system
design, and software development support. The fifth paper, by W. Riddle
of the University of Colorado, presents the DREAM software design aid
toolbox and identifies an approach that involves the identification of
operational events, constraints on the occurrence of events, and provides
for the development of a system structure to support the event/constraint

76

situation. The final paper, by J. Wileden of the University of Massa-
chusetts, discusses a technique for use in describing dynamically struc-
tured, concurrent software systems.

These papers each address one or more aspects of Software Require-
ments, Specification, and Design Tools and should provide you with further
insight into the capabilities that exist today and possibilities for the
future.

77

SOFTWARE ERROR SOURCES (CCIP-85 DATA: 220 ERROR TYPES)

IRS FOUN D DURING OR
R ACCEP 'TANCE TEST

l LATE DISCOVERY OF AN ERROR HAS LARGE COST AND SCHEDULE
IMPACT

Figure 1

RQMTS CODE UNIT INTEG ACCEPT IN
TEST TEST TEST FIELD

DmLOPMEFNT PHASE

Figure 2

REQUIRZKENTS DEVEZLOPKENT

. REQUIREMENTS DEFINITION

. R3QUIRXE3NTS SPECIFICATION

. REQUIREMENTS ANALYSIS

. REQUIREMENTS TRACEABILITY

Figure 3

THE DEVELOPMENT OF PROGRAMS TO MEET

EXCEPTIONAL RELIABILITY REQUIREMENTS*

P. M. Melliar-Smith
SRI International

As modern aircraft flight control systems become more complex
and critical to aircraft safety, so the certification of the systems
becomes increasingly difficult. These flight control systems demand an
exceptional level of reliability, beyond that required of any other
computer application and well beyond what can be assured, or
demonstrated, by conventional methods. Moreover the increasing
complexity of the systems makes the attainment, and particularly the
confirmation, of this reliability increasingly difficult.

The traditional methods of program development and testing can
produce programs whose reliability suffices for many purposes. The
reliability required of such programs is low enough that it is possible
to measure the failure rate during testing or service and to use these
measurements to estimate the reliability of the program. However the
reliability required of safety-critical flight control programs is such
that even many years of testing or service in many aircraft will not
suffice to provide the data confirming that level of reliability. Thus
we can no longer depend on the the traditional approaches, which locate
and remove faults individually until the required reliability is
attained. Only approaches that can guarantee in advance that no faults
remain will be able to convince us that the flight control system will
meet the exceptional reliability reauirement.

It is interesting to contrast the capabilities and limitations
of the alternative methods of assuring the reliability of programs.
Thus flight testing must necessarily be only a partial test, which
cannot find all the possible faults but which makes very few assumptions
about the system. In contrast, program proof is extremely thorough and
ensures the absence of faults but only within the specific assumptions
made about the system. A part of the value of flight testing is that it
can be used to confirm those assumptions. Testing in an aircraft
simulator, which can afford a much more extensive but still inadequate
test sequence, makes fewer assumptions about the system. Designs based
on software fault tolerance use a different set of assumptions, and have
the advantage that they are effective against faults that are not
detected until the system is in service.

Recent advances in the application of formal mathematical
methods to computer programs have influenced program design, testing,
woof, and fault tolerance. In particular, the development of
formal specifications for programs now provides a basis point for all
of these activities. Further the semantic analysis of programs,
developed for proof, is starting to influence the testing of programs
and also the acceptance tests of the fault tolerance techniques. -

-*This research is supported in part by contracts from,:the
Flight Electronics Division, NASA Langley Research Center.

81

I -

EXCEPTIONAL RELIABILITY REQUIREMENTS

Safety Critical Computer Systems for Flight Control are allowed
lo--10 failures per hour, for the hardware and programs together.
Most of this allowance must be allocated to the hardware.

Reliability of this order cannot be confirmed (but can be refuted)
by testing, or even by extensive experience of use.

Certification of Safety Critical Computer Systems will therefore
require novel methods of increasing our confidence in the programs.

Several novel methods are being developed, each with advantages
and disadvantages. No one method can provide, at a reasonable cost,
the degree of confidence necessary for certification.

The greatest degree of confidence in the computer system, and the
most economical approach to certification, will come from an
appropriate combination of all of these methods.

Figure 1

ALTERNATIVE APPROACHES TO RELIABLE PROGRAMS

FORMAL DESIGN METHODS - essential, both for fewer program faults and
for feasibility of systematic verification.

MANUAL INSPECTION - inexpensive but more effective than testing,
good for design faults, less good for detail.

TESTING IN SIMULATOR - fault coverage too low for high reliability,
depends on accuracy of assumptions in model.

FLIGHT TESTING - very expensive but essential for credibility,
to confirm assumptions - not to find faults.

PROGRAM PROOF - expensive but extremely thorough,
depends on accuracy of assumptions in model,

FAULT TOLERANT DESIGN - effective against faults remaining in system,
complementary to other approaches.

Figure 2

82

DESIGN METHODOLOGY AND FORMAL SPECIFICATION

FORMAL SPECIFICATION - if we ,do not know what the system is to do,
how are we to say whether it did it at all
let alone reliably?

the design, 1
the testing,) all should be driven
the proof,) by formal specification.
the fault tolerance)

FORMAL DESIGN METHOD - to provide a structure that breaks a complex
problem into several simpler problems,

to provide levels of abstraction which allow
us to think more easily about the problem,

to allow us to talk about important aspects
of a design without trivial obscuring details.

Figure 3

TESTING

Used to get a 'working' program rather than a very reliable program.

Simple test sequences can find many faults, but do not have fault
coverage sufficient to find essentially all faults. The needed
reliability can be obtained only by finding essentially all faults.

Systematic methods have been developed for generating exhaustive
test sequences that can find all faults in a program. These test
sequences are very large and impossible to use in practice.

To reduce the length of the test sequences, mathematical analysis of
the program logic can be used. The analysis required to reduce the
test sequence to a reasonable size is equivalent to program proving.

The value of testing is not to find faults or to ensure the absence
of faults, but rather to confirm the validity of assumptions made
by the other methods of ensuring reliability.

Figure 4

83

PROGRAM PROOF

Now becoming feasible for specially designed programs, but still
very expensive.

Almost all experience is for programs that do logical manipulation.
No experience yet for linear control systems (let alone nonlinear).

The method depends on a very detailed formal model of the computer,
the sensors, the actuators, the aircraft dynamics, etc.
The proof is only as valid as this model and its assumptions.

The method proves that the program satisfies a formal specification.
The proof is only as valid as that formal specification.

Within these assumptions, program proof totally precludes any faults.

Timescale to completed demonstration for flight control: 3 - 5 years,
to first certification based on program proof: 10 years.

Figure 5

FAULT TOLERANT DESIGN

Error Detection and Error Recovery sections of programs are liable
to be much less reliable than ordinary program. Special case methods
are too complex to provide sufficient reliability.

The favored approach is that of Recovery Blocks.

Recovery Blocks require: Acceptance Tests,
Alternative Program Blocks,
State Restoration Mechanism.

Acceptance Tests, derived from the Formal Specifications, present
most of the difficulties, and cause most of the overhead and cost.

Recovery Blocks cannot provide the certainty of proof, but they
make fewer assumptions about the system. Thus they provide a useful
complement to proof in increasing our confidence in the system.

Figure 6

84

19

DESCRIBING A TRIPLY-REDUNDANT

FLIGHT CONTROL SYSTEM

FOR VERIFICATION OF DESIGN

Edward R. Rang
Honeywell, Inc.

INTRODUCTION

Remedies for many of the ills of software developments are known
and are explained in text books cl,Z]*. At Honeywell, our design guide-
lines are in the second edition L3,41. Yet we still have some problems
in putting the remedies to practice. For flight control systems part
of this is due to the nature of the system and part may be due to the
manner in which we do business. I would like to talk about these things
in the context of describing the first level of the software design
for a triply-redundant system. Our primary tool for descriptions is
HIP0 c53 . We have investigated the SRI International techniques [6,7,8]
and a methodology based on Dijkstra's constructive approach [9] . I
will make some subjective comments on these.

FLIGHT CONTROL SOFTWARE

The programs are of moderate size, less than 10 OOOlines of as-
sembly code. The functions separate nicely and allow the program to
be well structured with easily defined interfaces between modules. The
control and data structures are elementary. There are only a few do-
while loops for synchronization and shut-down. For these, the termina-
tion is obvious. Hence, symbolic evaluation will yield a formal verifi-
cation.

Most of the functions can be constructed as finite-state automata.
The outputs are computed in terms of the inputs and the current state
values. Then the transition is made to the next set of state values.
Holding to this makes the design of the mode logic functions, the signal
select mechanisms and the failure management facilities very certain.

- . L.-.-.---__ . . . ~_,_- -____ - - - _ ~. _I~ ._,. .

*Number in brackets indicates reference.

85

The basic simplicity of flight controls has permitted the engineer
to provide acceptable software designs.without using structured program-

,ming or other disciplines. The documentation of the software and the
description of the design has often been far from adequate.

HIP0 DESCRIPTIONS

With proper diligence, a hierarch-plus-input-output presentation
may be made complete and sufficiently rigorous to verify the flight
control system design. Attention must be paid to supplying the moti-
vations, a list of the functional capabilities which are required or
other descriptions of the purpose of the module. The variables which
carry state information should be specified. But there is nothing in
the HIP0 charting to enforce this. One can write complete and accurate
HIP0 charts that are as stark as assembly code.

The processes for synchronization in a triply-redundant system
at;oyt c;mplhicated. Formal descriptions are possible using Petri nets

e ave also studied synchronizations with simulations.

SRI INTERNATIONAL METHODOLOGY

This approach adds a formal discipline at the specification level.
It provides checks for syntax, checks for the consistency of references
between modules, and checks for circular references between modules. It
provides a discipline to ensure that the state variables are specified
and initialized. The tools are well designed and easy to use. However,
there is vastly more generality and capability in their methodology
than is required for our modest flight control system. The separation
of functional capability, descri bed by the non-procedural language
SPECIAL, and the sequencing of functions in time, described by their
program language, is a level of sophistication that obscures our simple
programs. It is just as difficult to add motivational comments and gen-
eral descriptive material to SPECIAL listings as it is to add that
material to assembly code. It is more natural on the HIP0 charts.

86

A CONSTRUCTIVE METHODOLOGY

The approach based on Dijkstra's work r9] aims at supplying veri-
fication along with the design. Attention is focused on loop invariants
for computations of very clever algorithms. This does not help our
problem much. The general design and documentation tools are useful
in the large-scale software development cycles, but flight controls can
manage with much less.

CONCLUDING REMARKS

My contention is that the design of a triply-redundant flight control
system may be described using HIP0 charts in sufficient detail and with
sufficient rigor to verify by oral demonstration that the system per-
forms all of its intended functions and does not perform any unintended
functions. This is facilitated by constructing the functions as finite-
state automata. The formal methodology constructed by SRI Internation
is helpful but not absolutely necessary since the flight control soft-
ware is not a particularly difficult problem.

87

REFERENCES

1. Tausworthe, R. C.: Standardized Development of Computer Software. Prentice-
Hall, 1977.

2. Yourdon, Edward: Techniques of Program Structure and Design. Prentice-Hall,
1975.

3. Bailey,' D. G.: Airborne Software Structured Development. Rep. ED-DGM
4000-310 (A), Honeywell Avionics Div., Feb. 1978.

4. Lane, David: Structured Programming Guidelines. Rep. 776-12882, Vols. I
& II, Honeywell Avionics Div., Sept. 1977.

5. Katzan, Harry, Jr.: Systems Design and Documentation - An Introduction to
the HIP0 Method. Van Nostrand Reinhold, 1976.

6. Robinson, L.; and Levitt, K.'N.: Proof Techniques for Hierarchically
Structured Programs. Comm. ACM, vol. 20, no. 4, Apr. 1977, pp. 271-283.

7. Roubine, 0.; and Robinson, L.: SPECIAL Reference Manual. Third Ed.
Tech. Rep. CSG-45, Standford Res. Inst., Jan. 1977.

8. Boebert, W. E.; Kamrad, J. M.; and Rang, E. R.: The Analytic Verification
of Flight Software: A Case Study. NAECON 1978, Vol. 1, May 1978,
pp. 242-248.

9. Boyd, D. L.; Pizzarello, A.; and Vestal, S. C.: Rational Design Method-
ology. Honeywell Rep. to RADC, HR-78-257: 17-38, June 1978.

10. Peterson, J. L.: Petri Nets. Computing Surveys, vol. 9, no. 3,
Sept. 1977, pp. 223-252.

88

20
SOFTWARE DESIGNERS.WORXBENCH

Requirements and Design Tools for Expression and Evaluation

Paul A. Scheffer

Martin Marietta Aerospace

One of the more innovative of recent software engineering activities is
the concept of a Programmer's Workbench (PWB). The PWB is a very different
approach to improving the software development process. It is based on a
program development "facility" much like those that have been developed for
other professions (e.g., carpenter's workbench, engineer's laboratory). This
approach helps focus attention on the need for adequate tools and procedures;
it serves as a mechanism for integrating tools into a coordinated set; and it
tends to add stability to the programming environment by separating the tools
from the product. The PWB idea separates the Workbench, which performs the
development and maintenance function, and the,host or target computer on which
the production system will run. The link between the two machines represents
a physical connection which is used to transfer data, run tests, etc.

A simple generalization of the PWB concept results in the idea of a total
software engineering facility, i.e., a Designer's Workbench (DWB). In the DWB
concept, the library of PWB support tools to build and manipulate program
source code is expanded to handle the complete set of functions needed for all
software design and development activities. Such functions include require-
ments and design component identification, specification, documentation,
management control support, design evaluation mechanisms, and so on.

At Martin Marietta/Denver, we are actively pursuing the development of
this concept. In addition to installing a software development laboratory as
a dedicated facility, we have several plans for expanding the tools repertoire
available. Using a PDP 11/70 architecture base, and system.software which
includes RSX-11M and the UNIX operating systems, standard PWB tools, and
INGRES data base capabilities, we are augmenting the system with several high
level DWB tools. These design tools basically take two forms. One is a set
of languages for expressing design: the set consists of a language for each
design level (currently expected to be 3) starting with requirements defini-
tion. The second form of design tool is closely associated with the languages
and satisfies a design evaluation function. Evaluators provide feedback infor-
mation to the designer on what has been expressed in the language. The
evaluation can be an assessment of what has been syntactically stated in the
language (consistency reports, summaries, etc.), a semantic assessment that is
static in nature (design structure), or a dynamic (simulative) assessment.

This presentation considers only those parts of this overall software
engineering facility plan which have been implemented and are being used. On
the language side, this includes a high level requirements language called
MEDL-R and an initial design phase language called MEDL-D. These two
languages have been carefully defined to allow a smooth transition from one to
the next. Primarily this is to support the traceability and management of
individual system requirements. Design evaluation tools are discussed in terms

89

of analytics for both requirements and design component structure, and in terms
of quantification of design quality. The analytic tools for evaluation provide
information on design in a manner similar to that provided by source code
analyzers. Design quality measures will provide feedback on the degree to
which a design satisfies various characteristics of quality such as maintain-
ability, modularity, or testability.

SOFTWARE DESIGNERS WORKBENCH

General: o Support Any Phase of S/W Development

0 "Comfortable" User Interface

o Extensible, Total System Development

Specific: Requirements Preliminary Design

Definition Structure

Management Data Definition

Analysis Interfaces

Future: Detailed Design Simulation

Architecture H/W - S/W Symbiosis

Processes Resources

Behavior

Figure 1

90

MULTI-LEVEL EXPRESSION DESIGN LANGUAGE SYSTEM

o Fills Void of Requirements Language (MEDL-R)

o Specific Language for Each Design Phase, Leading to End-to-End

Support System

o Assessment Methods to Evaluate a Design at Any Level

o Measurement Techniques Attempt to Quantify Characteristics of

Quality

Figure 2

STATUS

o MEDL-R: Implemented, Undergoing V & V Using NASA "Live"

Requirements Test-Bed

o MEDL-D: Still in Design Activity

o CSEF: Operational, Anticipated Hardware Expansion

o Design Languages: Surveys and Evaluations On-Going, SSL Model

for MEDL-D

o RISS/MASS: Implemented Relational DBMS for CSEF

Figure 3

91

MEDL ASSESSMENT

o Requirements Level Unique in Supporting True Requirements Data Base

0 Information "Explosion" a Potential Problem

0 Reduces Manageability Problems, especially for Volatile Requirements

0 Serves Throughout Life-Cycle of S/W Development

o Crossover, MEDL-R to MEDL-D to MEDL-P, Satisfies Traceability Needs

0 Inexpensive Tool (11/70); Requires DBMS Currently Built in FORTRAN

Figure 4

CONCLUSIONS

o DWB Concept - Properly Focuses Emphasis on Tools

o Cost-Effectiveness - Benefits with just a Few Tools (PWB) Seem to

Justify Further R & D and Library Expansion

0 S/W Design Model - All-Inclusive Model (Concept Formation to

Maintenance) is Lacking

o Design Evaluation Mechanisms - Need Further Research for Calibration,

especially Quality Aspects

Figure 5

92

21
TOOLS FOR EMBEDDED SOFTWARE DESIGN VERIFICATION

J. C. Enos and R. R. Willis
Hughes Aircraft Company

SUMMARY

One of the many ways in which Hughes is attacking the software life cycle
cost problem is by engineering tools which verify that designs meet intended
requirements. These tools support the user by providing automatic feedback
for assessing the consistency, completeness, performance, and quality (cost)
of software designs. The tools and their application to known problems are
summarized in Table 1.

TOOL CAPABILITIES

Structured Design (ala Constantine/Meyers) is Hughes' methodology for devel-
oping the structure of software components. To support designers, we have
developed the Structure Chart Graphics System (SCG) and the Design Quality
Metrics System (DQM). SCG automates the development and formal documentation
of structure charts using graphics terminals, plotter outputs, and a computer
data base of the structure. DQM uses the data base to automatically quantify
the extent to which structured design guidelines have been adhered to. I.e.,
DQM enables the designer to evaluate the cost or goodness of the design.

Hughes makes extensive use of representative simulation models to verify
that designs meet required performance criteria. To support the analysts we
have developed the General Function Model (GFM) and the Distributed Data Pro-
cessing Model (DDPM). The GFM provides a general simulation model for evalua-
ting operational feasibility. The DDPM provides a vehicle for quantifying de-
sign tradeoffs for architecture, allocation, hardware selection, and software
design.

These tools have been integrated or are scheduled for integration into an
automated support facility, the Design Analysis System (DAS). The DAS current-
ly provides a user-engineered graphics interface, automatic model generation
and interactive graphics support to the General Function Model for operational
feasibility analysis (DAS/OFD). PSL/PSA (University of Michigan ISDOS project)
supplements the system with automatic documentation, common data base mainten-
ance, and consistency and completeness checking.

FUTURE PLANS

The DAS is an evolving system. All tools as described are currently avail-
able either as an integrated part of the system or as stand-alone tools. To
address the technology transfer problem for Structured Design we are engineer-
ing a semantic preprocessor for the SCG System which will enforce, on a company
wide basis, the standards established through use of the methodology on a
number of projects. To address the requirements communication problem, we are
engineering a requirements analysis'system which will include: 1) a graphic
system for construction; maintenance, and documentation of information flow
diagrams, 2) simulation modelling aids such as QGERTS and GMB (UCLA SARA pro-
ject), and 3) schema for mapping these data into PSL for automated traceability.

93

TABLE l.- SOFTWARE DESIGN ANALYSIS TOOLS

DELIVERED SYSTEMS DON’T MEET
INTENDED REDWREMENTS

3. REa”lREMENTS ANALYSIS FOR
CONSISTENCY AND COMPLETE-
NESS

THE DESIGN ANALYSIS SYSTEM
AN INTEGRATED APPROACH TO TOOL DEVELOPMENT

SOFTWARE
DESIGNER

DESIGN ANALYSIS SYSTEM

REOUIREMENTS
SFEClFlCATlONS

Figure 1

94

COMPUTER SYSTEM
ALTERNATIVES

DAWOFD
AN AID TO EVALUATION OF USER REQUIREMENTS FOR

OPERATIONAL CONCEPT FEASIBILITY

THE DDPM
A TABLE-DRIVEN MODEL FOR SIMULATION OF
COMPUTER SYSTEM DESIGN ALTERNATJVES

COMPUTER SYSTEM
SPECIFICATION

COMPUTER SYSTEM
SPECIFICATION

WHICH PLAN BEST

4MDAH L 470

Figure 3

STRUCTURED DESIGN GRAPHICS SYSTEM
AN AID TO STRUCTURED DESIGN PROVIDING AUTO-

DOCUMENTATION AND METHODOLOGY STANDARDIZATION

SOFTWARE
DESIGNER

HARD COPY (6’ SIZED)

WRT LINKAGES/

WALL SIZE

(QUALITY METRICS)

(UP TO 20 FT BY 20 FT)

20 ft = 6.1 m

Figure 4

DESIGN QUALITY METRICS SYSTEM
A QUANTITATIVE MEASURE FOR DESIGN “GOODNESS”

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

STRUCTURE

COMPLEXITY (MCCABE, SCHNEDmWIND)
Ci = Ai - Ti

TREE IMPURITY (LEVEL 0 TO i)
Ri = Ci/Ai

TREE IMPURITY (LEVEL i-l TO i)
Di = 1 - ATi/AAi

o 2 4 6 6 10 12 14 16

WHERE:
Ai = NO. OF ARCS FROM

LEVEL 0 TO i --_--- .-.
Ti = NO. OF NODES FROM

LEVEL 0 TO i (-1)

LEVEL

Figure 5

96

22
AN EVENT-BASED DESIGN METHOD
FOR EMBEDDED SOFTWARE SYSTEMS

William E. Riddle
University of Colorado at Boulder

The Design Realization, Evaluation And Modelling (DREAM) system has been
developed to provide aid to the designers of complex software systems. Its
major component is a language, called the DREAM Design Notation (DDN), which
permits the rigorous description of a software system as it evolves during
design. The language also permits the rigorous description of the environment
in which the software system operates. The DREAM system supports a variety of
design methods through tools which provide bookkeeping and decision-making aid
to designers. A trial, partial implementation of the system has been completed
and the design language has been used to describe a wide range of existing
software systems. The language has also been used in several design experi-
ments conducted to assess the effectiveness of the system during design, but
more rigorous assessment of the system and language is needed.

In the course of the design experiments, however, a new variation of the
traditional top-down, elaborative design method has been identified. In this
event-based design method, the first step is to identify interesting events
which occur during the operation of the system. Then constraints upon the
occurrences of these events are rigorously defined. Then system components are
demarcated and interactions among the components are defined which lead to the
satisfaction of the constraints. These activities constitute a design step and
produce a more complete, but still incomplete, design which is further elabor-
ated by the next design step.

The event-based design method, as currently defined within the context of
the DREAM system, is oriented toward the development of the processing strate-
gies of software systems having components which operate concurrently. It
introduces a desirable rigor into software system design and forces designers
to consider global aspects of the system before developing the system's detail.
The method also provides many opportunities for analysis, allowing designers to
incrementally assess the appropriateness of their design decisions.

BIBLIOGRAPHY

Riddle, W. E.; Sayler, J. H.; Segal, A. R.; Stavely, A. M.; and Wileden, J. C.
DREAM -- A Software Design Aid System. Proc. Third Jerusalem Conf. on Infor-
mation Technology (Jerusalem), Aug. 1978.

Riddle, W. E.; Wileden, J. C.; Sayler, J. H.; Segal, A. R.; and Stavely, A. M.
Behavior Modelling During Software Design. IEEE Trans. on Software Engineering,
July 1978.

Riddle, W. E.; Sayler, J. H.; Segal, A. R.; Stavely, A. M.; and Wileden, J. C.:
A Description Scheme To Aid the Design of Collections of Concurrent Processes.
Proc. 1978 National Computer Conf. (Anaheim), June 1978.

97

THE DREAM SYSTEM

PURPOSE: provide aid to designers of complex
software systems

FACILITIES:
. DESIGN LANGUAGE for blueprinting the software

and the environment in which it is embedded
. DESIGN METHODS for the gradual evolution of a

svstem's architectural design
in the bookkeeping . DESIiN TOOLS to aid designers

and decision-making tasks

STATUS:
. design language has been camp
. partial, trial implementation
. several existing systems have

. operating systems

. artificial intelligence

. control systems

. hardware systems

letely developed
is complete
been described:

systems

. interactive computing systems
. a few design experiments have been conducted
. analysis techniques for the support of decision-

making have been formulated

FUTURE:
. need to increase domain of systems which can be

attacked:
. dynamically structured systems
. interrupt-driven systems

. need to expand the set of decision-making tools

. need a full, proof-of-concept implementation

. need to test existing design methods

. need to develop new design methods

Figure 1

EVENT-BASED DESIGN METHOD

(SPECIFICATION)

delimit interesting happenings

.S

on
nl / - \
-L----(INTERACTIONS \

\-

COMMENTS:
. back-up may be necessary
. language allows decisions at each step to be

recorded
. bookkeeping aid supports the preparation and

modification of evolving description
. decision-making aid allows the completeness

and consistency of the description to be
checked at each step

Figure 2

-

CONSTRAINT DESCRIPTION

EVENT DEFIbIITION

INTENT: delimit interesting happenings

EXAMPLE: EVENT DEFINITION;
heat-up: DESCRIPTION; temp 2 150.F END;
handle-hot-engine:

SEQUENCE (heat-up, notice, ring);
END;

CONCEPTS USED:

l definition of primitive events

l definition of non-primitive events as sequences
of other events:

concatenation, repetition, alternation,
concurrency, re-entrancy, synchronization

COMMENTS:

l a system is a collection of parallel parts

l the system is both the software portions and the
other parts with which the software interacts

l start with an external vie!!.!

INTENT: capture requirements

EXAMPLE: DESIRED BEHAVIOR;
POSSIBLY 4 CONCURRENT

(SEQUENCE (heat up, notice, ring));
END;

CONCEPTS USED:

l requirements can be described in terms of
desirable (or undesirable) event sequences

COMMENTS:

. description is non-prescriptive, admitting
many ways to achieve the desired behavior

. description is non-procedural, specifying
what (effect) rather than how (cause)

. the requirements that are captured may come
either from the original specification or
from considering incomplete parts of the
design

Figure 4 Figure 3

COMPONENT DELINEATION

INTENT: define agents

EXAMPLE: SUBCOMPONENTS;
engines ARRAY [1..4] OF [engine];
monitor OF [engine monitor];
alarm OF [audio-device];
END;

CONCEPTS USED:

l systems decomposed hierarchically

l parts viewed as operating concurrently

COMMENTS:

l parts may be only hypothetical ones

l parts may be software or "hardware"

Figure 5

SUMMARY COMMENTS

Useful in defining the processing strategies
employed in the system.

Useful for systems that decompose into parallel
parts.

The method forces consideration of global aspects
before consideration of detail.

The method leads to a desirable rigor in
recording decisions at each step.

Useful analysis can be performed upon the
evolving description; allows designers .to
incrementally assess the appropriateness of
the design.

Figure 6

INTENT:

EXAMPLE .

INTERACTION DEFINITION

develop cooperation needed among
components in order that constraints
are observed

[engine monitor]: SUBSYSTEM CLASS;
receive status: IN PORT; END;
sound aTarm: OUT PORT; END;
observe: CONTROL PROCESS; MODEL;

ITERATE RECEIVE receive status;
MAYBE SEND sauna alarm;

END; -
END;

END; END;
END;

CDNCEPTS USED:

l interactions defined by message transfer

. pseudo-procedural definition of message
handling

COMMENTS:

. redundant description allows consistency
checking

* message transfer may or may not be the real
mode of interaction

Figure 7

23
A TECHNIQUE TO AID IN THE DESIGN AND ANALYSIS

OF DYNAMICALLY STRUCTURED, CONCURRENT SOFTWARE SYSTEMS

Jack C. Wileden
University of Massachusetts

Many contemporary complex software systems are most naturally
described as collections of interacting parallel processes in which
processes are created and destroyed or patterns of potential process
interaction are altered during system execution. A description of
this kind may be merely an accurate reflection of dynamic restructuring
capabilities designed into the software system, as in the case of the
RC4000 [l]* and HYDRA [2] operating systems or the HEARSAY '[3] speech
understanding system. Alternatively, this descriptive approach may
be useful in explicitly representing potential modifications to a system's
configuration which tight result from the failure of processing elements
or communications channels due to faults in either hardware or software.
Thus, since the design of a complex software system should ideally be
represented in the moat natural possible manner, it seems evident that
software system design tools should incorporate constructs for describing
dynamically-structured parallel systems. As currently specified, however,
design tools such as DREAM [4], SARA 551 and SREM [6] all base their
system descriptions on a fixed set of processes and a fixed pattern of
process intercommunication, with no provision for the natural re;>resen-
tation of dynamic structure in a software system's design.

In this presentation, we discuss a technique developed for use in
describing dynamically structured , concurrent software systems [7]. This
technique is based upon a description language, called DYMCL, and an under-
lying formal model which provides a well-defined semantics for DYMOL'S
constructs. Our technique, slated for future inclusion in the DREAM design
aid system, is currently being employed as a rudimentary, stand-alone
design tool and used in an investigation of cooperative distributed pro-
cessing systems 181. Our current assessment of the technique's potential
utility as an aid to software system designers is largely based upon examples
such as those described in the presentation. The examples considered to
date suggest that, by providing capabilities for analyzing an evolving
design, the technique can be of significant value to designers of dynamically
structured, concurrent software. A more complete assessment of the technique's
value must, however, await the development of automated versions which
can serve as a basis for continued investigation and experimentation.

*Number in brackets refers to reference.

101

REFERENCES

1. Brinch Hansen, P.: The Nucleus of a Multiprogramming System. Comm. ACM,
vol.. 13, no. 4, Apr. 1970, pp. 238-241, 250.

2. Wulf, W.; Levin, R.; and Pierson, C.: Overview of the HYDRA Operating
System Development. Proc. 5th Symp. on Operating Systems Principles,
Operating Syst. Review (ACM SIGOPS Newsletter), vol. 9, no. 5, Nov. 1975,
pp. 122-131.

3. Fennel, R. D.; and Lesser, V. R.: Parallelism in AI Problem Solving: A
Case Study of HEARSAY-II. IEEE Trans. Comp., vol. C-26, no. 2, Feb. 1977,
pp. 98-111.

4. Riddle, W. E.; Wileden, J. C.; Sayler, J. H.; Segal, A. R.; and Stavely, A. M.:
Behavior Modelling During Software Design. IEEE Trans. Software Eng.,
vol. SE-4, no. 4, July 1978.

5. Estrin, G.; and Campos, I.: Concurrent Software System Design, Supported
by SARA at the Age of One. Proc. 3rd Int. Conf. on Software Eng., 1978,
pp. 230-242.

6. Davis, C. G.; and Vick, C. R.: The Software Development System. IEEE Trans.
Software Eng., vol. SE-3, no. 1, Jan. 1977, pp. 69-84.

7. Wileden, J. C.: Modelling Parallel Systems With Dynamic Structure. COINS
Tech. Rep. 78-4, Dep. Computer & Information Sci.,, Univ. .of Massachusetts,
Jan. 1978.

8. Lesser, V. R.; and Corkill, D.: Cooperative Distributed Processing: A New
Approach for Structuring Distributed Systems. COINS Tech. Rep. 78-7,
Dep. Computer & Information Sci., Univ. of Massachusetts, 1978.

102

PARALLEL SYSTEM WITH DYNAMIC STRUCTURE

(PSDS)

l Simultaneous Activity By Multiple Components

l Coordinated Via Intercomponent Interaction

l Components May Be Created Or Destroyed

l Intercomponent Interaction Patterns May Change

Figure 1

DYNAMIC PROCESS MODELLING SCHEME

(DPMS)

Components = Processes

- Described By DYMOL Process Templates
- Ports
- Buffers

Interaction = Message Transmission

- Finite Set Of Distinct Message Types
- Process Ports Connected By Channels
- Message Transmission Mediated By Links

Dynamic Structure + Instantaneous Configurations

- Configuration Matrix
- Process States
- Link States

DPMS Model = Set Of Process Templates + Initial
Instantaneous Configuration

Computation = Sequence Of Instantaneous
Configurations

- Possibilities Determined By DYMOL Semantics

Figure 2

PARALLEL SYSTEMS WITH DYNAMIC CONNECTIVITY

(DC SYSTEMS)

l Fixed Set Of Components

l A Behavior Representation Technique

. Finite Expression Representing Possibly Infinite
Set Of Behaviors

l Varying Component Interaction Patterns
. Descendant Of

l Examples:

- Computer Networks
- Intertask Message Routing

Figure 3

DPMS MODELS OF DC SYSTEMS

l Fixed Set of Processes

l Varying Channel Connectivity

' DC DYMOL

- No CREATE Or DESTROY

l Fixed-Size, Square, Configuration Matrices

Figure 4

CONSTRAINED EXPRESSIONS

- Event Expressions (Riddle)
- Counter Expressions (Welter)

l Event Alphabet E

. Constraint Alphabet S=S~S$..,VSn

- EfG=@

l Event Expression Operators

- Regular Expression Operators Plus a And+

l Constrained Expression Is:

- A Regular Expression (Including 0) Over EUS
- Interpreted With Respect To Constraint Set CS

. Interpreted Language L For Expression R Is: I

L=H(RnC&%..fiCn)
where

cs={cl,c*,...,cn]

H:EUS+ E H(e)=e H(s)=X

Figure 5

USING HDM FOR EMBEDDED SYSTEMS*
24

L. Robinson and K. N. Levitt
SRI International

A generally accepted set of concepts--abstraction, hierarchical structure,
and modularity--has emerged from recent software research. If followed, these
concepts can lead to software with improved reliability, improved maintain-
ability, and lower costs. These concepts have provided the basis for several in-
formal software-development methodologies. The informal software methodologies
have not produced improvements because they provide only guidelines. They
neither provide a metric for evaluating a system's adherence to guidelines nor
allow a mathematical proof that a system meet its requirements.

In contrast, HDM (Hierarchical Development Methodology), a formal methodolo-
gy developed at SRI International, overcomes the shortcomings of the informal
methodologies, because it is based on a formal model of computation and because
it requires formal written specifications that describe software development
decisions.

Derived from the concepts, the formal model of computation provides mecha-
nisms with enforceable rules. These rules restrict the structure of a system
and the process of its development.

HDM divides the software development process into stages--structuring, de-
sign, representation, and implementation--each of which produces formal specifi-
cations. Languages are provided for specifying the decisions at each stage;
on-line tools check these specifications for violations of the rules. The con-
sistency of these specifications can be shown through formal verification. For
example, we can verify that a system's implementation meets its requirements.
Thus HDM introduces tools and formal verification into all stages of system
development--a first attempt to incorporate formality and checking into the
design stages.

The status of HDM is twofold. It is continuing to evolve as more issues are
covered and more is learned about the software development process. At the same
time it has shown its value as it currently exists in developing certain classes
of large systems.

SRI is developing tools to assist in the development and verification of
software systems, particularly those concerned with embedded systems. SRI will
apply the tools in verifying the hardware-fault-tolerance properties of SIFT
(Software-Implemented Fault Tolerance), an embedded system for aircraft control
in which most mechanisms for establishing tolerance to hardware faults are part
of the operating system software.

*The work on the development aspects of HDM is being supported by the Naval
Ocean Systems Center under Contract N00123-76-C-0195. The verification system
work and its application to SIFT is being sponsored by NASA-Langley Research
Center under Contract NAS l-15528.

105

HM (HIERARCHICAL DEVELOPUENT H~THODOLOGY)

CONCEPTS ON WHICH HIM IS BASED

. Hierarchical Structure

. Abstraction

. Modularity

. Formal Specification

. Data Representation

. Program Verification

MFCHANISHS THAT UNIFY THE CONCEPTS

. Abstract Machines: operations, internal data structures

. Modules

. Stages of development

. System families

LANGUAGES OF HDM

. HSL (Hierarchy Specification Language)--structure of machines
and modules

. SPECIAL (SPECIficatlon and Assertion Language)--
specification and data representation

. ILPL (Intermediate Level Programming Language)--
operation implementation

TOOLS OF HDM

. Syntactic Checking
l Self-consistency
l Mutual Consistency

. Formal Verification
l Design
w Implementation

Figure 1

IMPACT OF HDM

ON RELIABILITY

l Production of "simplern systems
l Feasibility of verification
l Elimination of many errors by use of languages

and tools
l Feasibility of producing complete specifications
l Structuring of program testing

ON DEVELOPMENT PROCESS

l Structuring of decisions according to stages
l "Dialogues" using formal specifications
l Use of woff-the-shelfn modules
l Generality from system family approach
l Usefulness of tools In all stages

ON LIFE CYCLE MAINTENANCE

4 Precise, readable documentation from specification
l Facilitation of modification

Figure 2

106

TOOLS OF HDM

MODULE SPECIFICATIONS
(SPECIAL)

1

MODULE
CHECKER

REPRESENTATIONS
(SPECIAL)

REPRESENTATION
CHECKER

IMPLEMENTATIONS
(ILPLI

1

IMPLEMENTATION
CHECKER

INTERFACE DESCRIPTIONS
(HSLI

t

INTERFACE AND
HIERARCHY CHECKERS

USER GUIDANCE
1 v

VERIFICATION
SYSTEM

L9

LB

L7

L6

L5

L4

L3

L2

Ll

LO CAPABILITIES

Figure 3

HIERARCHY FOR PSOS (Provably Secure Operating System)
(Only a subset is shown)

IISER VISIBLE
PROCESSES I/O

SEGMENTS

PAGES

SYSTEM
PROCESSES

SYSTEM
I/O

MEMORY PRIMITIVE
I/O

INTERRUPTS

USER
OBJECTS

DIRECTORIES

EXTENDED
TYPES

ARITHMETIC

Figure 4

107

ADJACENT ABSTRACT MACHINES IN A HIERARCHY

.

. INVOCATION OF OPERATIONS

. CHANGES VALUE OF DATA

. ACCORDING TO SPECIFICATION

ABSTRACT
MACHINE i

THIS PROGRAM

IMPLEMENTS OPf

IN TERMS OF
OPERATIONS 1-1

DATA i-l
REPRESENTS
DATA i

OPERATIONS 1-1

STAGE

Co”ceptualizatio”

External
Interface
Definition

Intermediate
Interface
Definition

Formal
Specification

Formal
Representation

Abstract
Implementation

Coding

Verification

Figure 5

STAGES OF HDH

ACTIVITY

Formulating system
goals

Defining external and
module structure of
extreme machines

Defining external and
module structure of
intermediate machines

Specifying modules

Describing data
structures

Writing implementation
specifications

Producing executable
programs

Proving properties of
formal descriptions

LANGUAGE

None yet

HSL

SPECIAL

ILPL

A programming
language

Language of
verification
system

ABSTRACT
MACHINE i-l

TOOL(S)

None yet

Interface
checker

Interface and
Hierarchy
checkers

Module
checker

Representation
checker

Implementation
checker

Compilers,
Optimizers,
Assemblers, etc.

Verification
system

Figure 6

108

25

AN INTEGRATED VERIFICATION AND'VALIDATION TOOL FOR FLIGHT SOFTWARE

Richard N. Taylor, Leon J. Osterweil*, and Leon G. Stucki

Boeing Computer Services Company

NASA Langley Research Center is developing the MUST (Multipurpose User-
oriented Software Technology) program to cut the cost of producing research
flight software through a system of software support tools. .Boeing Computer
Services Company (BCS) has designed an integrated verification and validation
capability as part of MUST. Documentation, verification and testing options
are provided with special attention on real-time, multiprocessing issues. The
needs of the entire software production cycle have been considered, with
effective management and reduced lifecycle costs as foremost goals.

Previous verification and validation systems generally have utilized a single
technique, such as static or dynamic analysis. However, thorough examination
of any one program requires the use of several techniques.
a comprehensive set of analytical techniques,

Besides providing
the integrated capability BCS

has designed takes advantage of the complementary abilities of the different
schemes in a synergistic manner.
emerged though.

A wone-tool-does-it-all" concept has not
The need for a distributed set of tools became clear as the

various usage modes present in the MUST environment were modeled. No single
sequence of testing and analysis activities is optimally suited to all MUST
requirements. Rather, for detecting specific classes of errors under specific
operating constraints, a specific combination of analysis techniques is chosen.

The concern with multiprocessing issues is motivated by the increasing soph-
istication of flight hardware and software, which present difficulties such as
protecting shared data. New research was conducted into the problem of
statically detecting such errors with encouraging results. Consequently,
capabilities have been included in the design for static detection of data flow
anomalies involving communicating concurrent processes. Some types of ill-
formed process synchronization and deadlock also are detected statically.

Although the HAL/S language is the primary subject of this design, the algo-
rithms developed are readily applicable to other languages. Prototype capa-
bilities for HAL/S have been developed in conjunction with the design. Full
implementation of these capabilities will provide the MUST user with extremely
powerful program development tools. Such programming environments offer a very
desirable and profitable alternative to the way software is typically produced.

*Boeing Computer Services Company and the University of Colorado

109

END USER PEW1 REMENTI
4 ANALYSIS -

PRELIMINARY, DETAIL
DESIGN - DESIGN

5 CODE

.

Figure 1

CONSISTENCY CONSISTENCY CONSISTENCY CONSISTENCY

n n
END USER

\ + \

?EQUIREMENTI
ANALYSIS

PR;l&Ml;ARY DETAIL
DESIGN CODE

REQUIREMENTS PRELIMINARY INCREMENTALLY CODE
VERIFICATION DESIGN DETAILEDDESIGN

VERIFICATION VERIFICATION VERIFICATION

A--

Figure 2

d

?EQU I REMENTS -
ANALYSIS _

fI.J
1 SYSTEM 1
I DATA ,
1 BASE

-L-M
;

\

- ANIJ

SYSTEM TEST

Figure 3

SOURCE = STATIC SYMBOLIC
TEXT ANALYSIS h EXECUTION

DYNAMIC
* TESTING

.

Figure 4

110

SOURCE CODE

EXECUTION OPTIONS

MODULE VERIFKATION OPTIONS
Figure 5

CONCLUSIONS
1) PROGRAMMING ENVIRONMENTS A SIGNIFICANT AID IN THE PRODUCTION OF

SOFTWARE

2) A COMPREHENSIVE SET OF INTEGRATED VERIFICATION AND VALIDATION TOOLS
ALLOW A MAXIMUM AMOUNT OF TESTING TO BE PERFORMED IN THE PROGRAMMING
ENVIRONMENT

3) SOFTWARE LIFECYCLE ISSUES MAY BE EFFECTIVELY ADDRESSED

RECOMMENDATIONS
1) IMPLEMENTATION AND UTILIZATION OF PROGRAMMING ENVIRONMENTS

2) MORE RESEARCH INTO THE DEVELOPMENT OF INTEGRATED REQUIREMENTS AND
DESIGN TOOLS, ALLOW VERIFICATION BETWEEN VARIOUS LEVELS OF
SPECIFICATIONS

3) FURTHER RESEARCH INTO VERIFICATION OF REAL TIME, CONCURRENT PROCESS
SOFTWARE

Figure 6

111

I -

USE OF SYMBOLIC EXECUTION IN VERIFICATION AND VALIDATION 26

Marilyn S. Fujii and Michael A. Ikezawa
Log-icon, Inc.

INTRODUCTION

AMPIC is a symbolic execution tool used in verification and validation of
assembly and higher order language programs. AMPIC has three major processing
phases: structure analysis, expression translation, and path analysis. Each
of these phases is invoked sequentially to perform a portion of the structural
calculus required for symbolic execution.

STRUCTURE ANALYSIS

The first phase, structure analysis, decomposes the program into two basic
types of structural elements referred to as sequences and transfers. A sequence
is an ordered group of executable statements or instructions that must be
followed consecutively from top to bottom. A transfer is any program statement
or instruction that causes the selection of the next statement or instruction
from two alternatives. In the sample program shown in figure 1, the sequence
and transfer segments are indicated by consecutively numbered S and T symbols.

The structure analysis phase next produces an equivalent, well-structured
representation of the program which is displayed in either of two types of flow-
charts. The abbreviated flowchart, shown in figure 2, concisely summarizes the
program's structure in terms of its S and T segments. The full text flowcharts
are similar, but replace S and T symbols with actual source code.

The structured flowcharts are used in verification and validation to reveal
distinct program paths, a significant advantage over conventional flowcharts.
Comparing structured flowcharts to design specifications detects errors in imple-
mented <program logic. Additionally, segments occurring in more than one path can
be identified as candidates for optimization.

EXPRESSION TRANSLATION

The second phase, expression translation, transforms the program's source
code into a mathematical notation. Particularly for assembly language programs,
expression translation minimizes the amount of painstaking and error-prone manual
analysis. The translations for higher order language programs resemble the
original code, with some algebraic simplification. As shown in the translation
of the sample program (fig. 3), the symbol NU indicates the final value of a
variable within each segment.

Expression translation is most us,eful in the verification and validation of
assembly language programs, for which it is necessary to translate source code
into a less machine-oriented form. Figure 4 shows the assembly language equiva-
lent of sequence S2 from the sample program and its translation. In comparison
to the source code, the translation is quickly comprehended and can easily be
checked against equations in the design specification.

113

PATH ANALYSIS

The third phase, path analysis, identifies each program path as a series of
S and T segments. The conditions that are logically necessary to execute each
path are derived, as are the results of executing each path. Figure 5 shows the
symbolic execution results for two of the sample program's paths. For convenience
in describing paths, the transfer outcome is indicated by replacing the T trans-
fer symbol with a P (no transfer) or an R (transfer).

AMPIC's path analysis is used in verification and validation to derive the
initial and resulting conditions for program paths. It reveals unreachable code
by identifying contradictory initial conditions. For programs suitable for
case-by-case analysis, path conditions and results are often readily comparable
to design specifications. Path analysis results can also be used to systemati-
cally generate test cases that provide complete coverage.

SUMMARY

AMPIC has been successfully applied on several verification and validation
projects including tracking, avionics flight control, electronic countermeasures,
command and control, and targeting applications. Our experience in applying
AMPIC has shown that its capability to analyze complex programs has reduced the
need for several commonly employed software tools and has added much needed
rigor to verification and validations techniques.

SUBROUTINE ROOT
IMPLICIT INTEGER*2(I,K-N)
COMMON/ARGS/A,B,C
COMMON/VALUE/ROOT1,~OOT2,NROOT
IF(A.EQ.0) GOT0 100
TEMPI = 4 *A*C
TEMPl = B;B - TEMPl
IF(TEMPl.LT.0) GOT0 100
TEMP2 = 2.*A
ROOT2 = -(B/TEMP2)
IF(TEMPl.EQ.0) GOT0 300
TEMPZ = FSQRT(TEMPl)/TEMP2
ROOT1 = ROOT2 + TEMP2
ROOT2 = ROOT2 - TEMP2
NROOT = 2
RETURN

100 NROOT = 0
RETURN

300 ROOT1 = ROOT2
NROOT = 1
RETURN

‘r-1 IF(A.EQ.0.) GOT0 S7

s2 TEMP1=4 *A*C
TEMPl=B;B-TEMPI

T3 IF(TEMPl.LT.0.) GOT0 S7

s4 TEMP2=2.*A
ROOT2=-B/TEMP2

T5 IF(TEMPl.EQ.0.) GOT0 S8

56 TEMP2=FSQRT(TEMPl)/TEMP2
ROOTl=ROOT2+TEMP2
ROOT2=ROOT2-TEMP2
NROOT=2
GOT0 OUT

57 NROOT=O
GOT0 OUT

END 58 ROOTl=ROOT2
NROOT=l
GOT0 OUT

Sample Program and its Sequence and Transfer Segments

Figure 1

114

<T3>- - - - - -
I I

Abbreviated Flowchart of Sample Program

Figure 2

Tl: JUMP (A = 0.)
NO JUMP (A # 0.)

52: TEMPl<NU> = B * B - 4. * A * C

T3: JUMP (TEMPT < 0.)
No JUMP (TEMPT 2 0.)

54: TEMP2<NU> = 2. l A
ROOT2<NU> = - B / (2. * A)

T5: JUMP (TEMPT = 0.)
NO JUMP (TEMPT f 0.)

56: TEMP2<NU> = .FSQRT(TEMPl) / TEMp2
ROOTl<NU> = ROOT2 + .FSQRT(TEMPl) / TEMP2
ROOT2<NU> = ROOT2 - .FSQRT(TEMPl) / TEMP2
NROOT<NU> = 2

57: NROOT<NU> = 0

S8: ROOTl<NU> = ROOT2
NROOl<NU= = 1

Translation of Sample Program

Figure 3

115

S2 DLA OCl
FMR A
FMR C
DSA TEMPl
DLA B
FMR B
FANR TEMPl
DSA TEMPl

S2: $A<NU> = B * B - 4. * A * C
$O<NU> = 0
$iKNU> # 1
TEMPl<NU> = B * B - 4. * A * C

Translation for Equivalent Assembly Language Segment

Figure 4

PATH: (Pl,S2,P3,S4,P5,S6,OUT)

IF: (A # 0.) & (8 * B - 4. * A * C 2 0.) & (B * B - 4. * A * C # 0.)

THEN: TEMPl<NU> = B l B - 4. * A * C
TEMPP<NU> = .FSQRT(B l B - 4. * A * C) / (2. * A)
ROOT2<NU> = - B / (2. * A) - .FSQRT(B l B - 4. * A * C) / (2. *A)
ROOTl<NU> = - B / (2. * A) + .FSQRT(B * B - 4. * A l C) / (2. * A)
NROOT<NU> = 2

PATH: (Pl,S2,P3,S4,R5,SB,OUT)

IF: (A # 0.) t (B * B - 4. * A * C 2 0.) & (B * B - 4. l A l C = 0.)

THEN: TEMPl<NU> = B * B - 4. * A * C
TEMP2<NU> = 2. * A
ROOT2<NU> = - B / (2. * A)
ROOTl<NU> = - B / (2. * A)
NROOT<NU> = 1

Symbolic Execution Results for Two Paths of Sample Program

Figure 5

116

27
SQLAB - Tools for Program Verification

Sabina H. Saib
General Research Corporation

The Software Quality Laboratory (SQLAD) is made up of a collection of
tools which can assist in the verification of a program written in one of
several programming languages (FORTRAN, IFTRAN, PASCAL, and Verifiable PASCAL).
The tools available in SQLAB provide reports in a fashion similar to compiler
diagnostics on errors that have been found to be costly in a number of error
studies.

Two major types of analyses are available: those that require additional
information prepared when the program is written and those that can analyze
the program as it is written normally. The set/use, mode, infinite loop, ex-
ternal reference, and unreachable code analyses require no additional state-
ments. The asserted use, units, and consistency proofs require additional in-
formation in the form of assertions.

The following capabilities are available for statically determining con-
sistency between source-level specifications and source code:

1. Verification condition generation by symbolically executing
INITIAL, ASSERT, and FINAL statements in combination with
source-code statements

2. Logical simplification of verification conditions by applying
standard normalization and simplification rules of predicate
calculus and first-order logic, as well as user-supplied axioms

3. Data access correctness checking of asserted access rights
to non-local data and parameters and actual access based on
data flow analysis

4. Units correctness checking by automatically comparing embedded
physical unit specifications with computational, decision,
and procedure reference statements

In addition, multi-module documentation reports, parameter checking reports,
and automatic instrumentation are available.

117

SOFTWARE QUALITY LABORATORY

0 INTRODUCE PRACTICAL APPLICATIONS OF PROOF OF

CORRECTNESS TO LARGE, COMPLEX, REAL TIME PROGRAMS

0 ELIMINATE COMMON ERRORS FROM SOFTWARE

0 INVESTIGATE LANGUAGES AND LANGUAGE CONSTRUCTS WHICH

AID SOFTWARE QUALITY

Figure 1

SQLAB CAPABILITIES

STATIC ANALYSIS - WITHOUT ASSERTIONS

STATIC ANALYSIS - WITH ASSERTIONS

EXECUTION OF ASSERTIONS

VERIFICATION CONDITION GENERATION

COVERAGE ANALYSIS

Figure 2

118

PUTURE PLANS FOR SQLAB

0 DEMONSTRATE DETECTION OF SPECIFIC ERROR TYPES

IN LARGE PROGRAMS

0 PROVIDE NEW ASSERTION TYPES

SEQUENCE OF OPERATIONS

PRIORITY AND TIMING

0 PROPOSE SPECIFICATION LANGUAGE

TI‘E.THE MODULE STUBS TO SPECIFICATION

Figure 3

LOOP ANAL YS I3 SUsROuTINE TEST

THE COND~TIOM THAT Must BE TRUE FOR THIS LOOP TO TERMINATE IS-

YFLAG .6Tg 0 *AND* K *CT. 0

0
5 (1)
6 (21
7 (1)
a (2)
9 (1)

16

WHILE (I .LE. N)
. IF (I .Ea. 5)
. . I =1+u
. ELSE
. . z= I + WLA~

ENOfF
;NDHm LE

Figure 4

119

AQA CONTRIBUTIONS YS STATE OF THE ART

0 PRACTICAL USE OF
ASSERTION TECHNIQUES

vs SOLE DEPENDENCE ON PROOF

a REAL PROGRAMMING LANUAGES VS THEORETICAL LANGUAGES
FORTRAN LISP
PASCAL NUCLEUS

0 NORMAL ARITHMETIC vs ONLY INTEGER
REAL
DOUBLE PRECISION
COMPLEX

0 NORMAL DATA STRUCTURES vs ONLY SIMPLE VARIABLES
ARRAY

0 RECOVERY FROM FAULTS vs CATASTROPHIC FAILURE

0 ANALYSIS OF LARGE PROGRAMS VS IMPRACTICAL COMPUTATION TIMES
WITH REASONABLE USE
OF COMPUTER RESOURCES

Figure 5

*,mlE”1s

NO. STATEMENTS VS TIME

Figure 6

120

28
*

A SOFTWARE QUALITY ASSURANCE EXPERIMENT

J. P. Benson
S. H. Saib

General Research Corporation

Over the past two years a number of techniques designed to
eliminate errors in software have been implemented in a collection of
programs called the Software Quality Laboratory. An important goal
of this effort has been the ability to analyze "realistic" programs.
By he&,&tic we mean programs which can execute on current computers
with current compilers, use floating point arithmetic, incorporate data
structures, be composed of multiple modules, and have a total size of
perhaps several thousand statements.

In order to demonstrate SQLAB's ability to locate errors, a medium
size program (-1000 statements) was selected. The program simulates the
tracking of objects by a radar and embodies many of the character-
istics of a complex software system including multitasking and data
structures composed of queues and records.

The experiment described in this paper was designed to evaluate
the use of assertions in a real time program. The experiment consisted
of adding errors to the test program from a list of the most common
software errors. A number of errors from a set of error categories
were selected and introduced into the test program. (During the course
of the experiment some errors already present in the program were also
detected.) Executable assertions were written to detect the errors and
the program was run to verify that the errors were actually detected.
The results suggest that some of the assertions could have been made
part of the variable definition statements of the programming language
itself rather than separate statements. In addition, three new types of
assertions which would be useful in error detection were identified:
variable range assertions, approximate result assertions, and sequencing
assertions.

*
This work was supported by the Army Ballistic Missile Defense Systems

Command under contract DASG60-76-C-0050.

121

SOFTWARE VERIFICATION USING SOLAB

PROOF L-5

USES OF ASSERTIONS

PROOF OF CORRECTNESS

INITIAL (B >= 0);

0 := B;

c := 0;

WHILE (0 f 0);

ASSERT (C + A l D = A l 8);

. . (B >= 0) AND (D # 0) =? (C + A l B = A * B)

EXECUTION TIME VALIDATION

ASSERT ((RFIRST > IR) ANO (XNEXT > ix) AND (XLATE <= IR));

FAIL

TIMEOVERLAP

END FAIL;

STATIC ANALYSIS

VAR SOVEL : REAL UNITS METERS/USEC;

INPUT RETURN, SPOUT, OBJIO;

OUTPUT OTOSREC, TOTOSREC, SROSREC;

Figure 1 Figure 2

SOFTWARE QUALITY EXPERIMENT

SOFTWARE ERROR CATEGORIES

COMPUTATION ERRORS

USING THE WRONG EQUATION

OVERFLOW

UNDERFLOW

MISSING COMPUTATION

EXTRANEOUS COMPUTATION

DATA HANDLING ERRORS

SUBSCRIPT ERRORS

FAILURE TO INITIALIZE A VARIABLE

REFERENCING THE WRONG VARIABLE

UPDATING THE WRONG VARIABLE

LOGIC ERRORS

MISSING TEST

INCORRECT TEST

INCORRECT SEQUENCING

HYPOTHESIS: EXECUTABLE ASSERTIONS ARE MORE EFFICIENT AND EFFECTIVE

THAN CORRECTNESS PROOF OR STATIC ANALYSIS IN DETECTING

THE MOST COMMON TYPES OF PROGRAM ERRORS.

.o EVALUATION

Figure 3 Figure 4

RESULTS AND CONCLUSIONS

ERROR DETECTION METHODS

REPRESENTATIVE ERRORS

COMPUTATION ERRORS

Cl: USING THE WRONG VARIABLE NAME IN AN EDU.4TION

c2: LEAVING OUT A COMPUTATION

c3: ADDING AN UNNEEDED COMPUTATION

DATA HANDLING ERRORS

Dl: REFERENCING THE WRONG VARIABLE N4ME

D2: USING THE HRONG ARITHMETIC OPERATOR

D3: NOT INITIALIZING A VARI4BLE CORRECTLY

LOGIC ERRORS

Ll: LEAVING OUT A TEST

LE: USING THE WRONG RELATIONAL OPERATOR IN A TEST

L3: EXECUTING THE WRONG SEQUENCE OF DECISIONS

ERROR TYPE

Cl

Dl

D2

D3

c2

c3

Ll

i2

L3

ERROR CHECK METHOD

CASE ANALYSIS STATIC

CASE ANALYSIS STATIC

RANGES AND BOUNDS STATIC

INITIALIZATION AND RANGE CHECKS STATIC

BOUNDS

DUPLICATION

EXECUTABLE

EXECUTABLE

REQUIREMENTS

AUXILIARY VARIABLE (INVARIANT)

ASSERTED ELSE

PROOF

PROOF

PROOF

COST

PROGRAM WITH ASSERTIONS

Compilation Time +56%

Execution Time +12%

Load Length +13.59!

Pigure 5 Figure 6

.

29
A SIMULATOR DEVICE FOR VALIDATION OF GENERAL AVIONICS EMBEDDED SOFTWARE

Byron M. Allen and Gary H. Barber
Intermetrics, Inc.

SUMMARY

The recent trends in avionics processing have been towards distributed
digital computers. This trend has led to a proliferation of computers
connected in a complex fashion. This situation has resulted in serious
integration problems. The history of software development has shown that
integration with systems external to the given computer is the most difficult
and costly portion of software development. Effective tools are needed
to validate avionics software before expensive flight testing and without
safety of flight restrictions.

The military avionic systems have contained digital computers since
1968 and the science of verification and validation has evolved since then.
Many tools ranging from instruction level simulators to Integrated Avionic
simulation have resulted and today a full range of these tools are utilized
to verify the operational flight programs of today's military aircraft.

The software required to drive these simulators has also evolved since
running in real time is often required. Aircraft models come in varying
complexities depending upon the avionic device being tested.

Since general aviation avionic manufacturers do not normally have the
extended budgets required for exhaustive levels of testing, a less expensive
generalized tool is required. This tool could be utilized for the develop-
ment and testing of flight software as well as extensive hardware/software
integration. This tool should provide all basic requirements of system
testing prior to flight test. The tool is designed in a modular fashion
such that both hardware and software can be modified to provide testing
of a wide variety of avionic systems.

125

DEFINITION OF DISTRIBUTED PROCESSING

o MULTIPLICITY OF RESOURCES

o PHYSICAL DISTRIBUTION

o COOPERATIVE AUTONOMY

o CONTROL ARCHITECTURE

o SYSTEM EXECUTIVE

o SYNCHRONIZATION SCHEME

Figure 1

HISTORY OF MILITARY AVIONIC SOFTWARE

o A7A, A7B AdALOG SYSTEMS WERE REPLACED BY A CENTRALIZED
DIGITAL COMPUTER IN 1969

o AVIONIC SYSTEM QUICKLY OUTGREW COMPUTER CAPABILITIES
AND SOFTWARE SUFFERED

o HIGHER ORDER LANGUAGES FOR AVIONICS WERE REQUIRED IN
ORDER TO INCREASE UNDERSTANDABILITY

o IdVESTMENTS 114 SIMULATORS OF MANY LEVELS HAVE BEEN
DEVELOPED FOR EVERY AIRCRAFT SYSTEM

Figure 2

126

GENERAL AVIATION PROBLEMS

o CERTIFICATION OF EMBEDDED SOFTWARE WILL BE A CONTINUING PROBLEM

o GENERAL AVIATION AVIONIC MANUFACTURERS DO NOT HAVE EXTENSIVE
BUDGETS THAT ALLOW PURCHASE OF MULTI-LEVELS OF SIMULATION
EQUIPMENT

o PURCHASE OF MULTIPLE COMPUTER SYSTEMS THAT SPECIALIZED FOR
PARTICULAR TASKS IS iJOT FEASIBLE

o CONCLUSION - AN INTEGRATED AVIONIC SIMULATOR THAT SUPPORTS
SOFTWARE DEVELOPMENT, SOFTWARE TEST, AND HARDWARE INTEGRATION
IS REQUIRED

Figure 3

BLOCK DIAGRAM OF INTEGRATED AVIONIC SIMULATION

OPERATOR'S
CONSOLE

STICK
RUDDER
THROTTLE
DISCRETE PANEL

I I I I L I /p

COMPUTER
/ 1 DI,:,;TES 1 '+

PRINTER
TAPE
CONSOLE

Figure 4

127

IAS SOFTWARE

p-1

f 1 IC

Al
I I

EARTH (YIkELS I--i"""'
I JNPIITC I IL-------J J I, An.1 VI”

ENGINE
ATMOSPHERE

3 RELATIVE
/ GEOMETRY

COMPUTER El
&

AVIONIf RECORDER

Figure 5

INTEGRATED AVIONIC SIMULATOR

o UTILIZES MUCH OF THE SAME EQUIPMENT AS THE DTS EXCEPT IT PROVIDES
INTERFACES FOR USE OF ACTUAL AVIONIC EQUIPMENT

o HIGH SPEED CONTROLLER PROVIDES PROGRAM SUPPORT REQUIRED FOR DEBUG

o THE SPECIAL INTERFACE DEVICE PROVIDES A GENERAL INTERFACING
CAPABILITY FOR VARIOUS ANALOG AND DISCRETE SIGNALS

Figure 6

128

1; -

DYNAMIC INTEGRATED TEST FOR THE SPACE SHUTTLE 30

Saul F. Stanten
Intermetrics, Inc.

;
F

A requirement exists for integrated testing of the Space Shuttle vehicle,

c
at Kennedy Space Center (KSC), prior to orbital flight. Vehicle complexity
and cost considerations have forced a search for innovative techniques for
implementation of integrated vehicle testing. This paper describes the motiva-
tion for Dynamic Integrated Test (DIT), the technique developed, and experimental
evidence which verifies the soundness of the approach. In addition, the applica-
billity to other real time avionics systems is explored. The test concept has
been accepted by the NASA, and tests on the OFT-l vehicle are planned for the
summer of 1979.

KSC is the first and only place that the actual orbiter, mated elements
(solid Rocket Boosters and External Tank), software, Ground Support Equipment
and payloads all come together. It is essential to check the total ascent
and entry configuration in an integrated fashion prior to flight. Examples of
items to be verified during such a test include data bus activity patterns,
critical timing sequences, software and hardware moding as a function of flight
parameters, interaction between real sensors, flight software, real effecters,
compatibility of ground launch software/hardware and on-board software/hardware,
the absence of EM1 problems, and other systems interactions which cannot be
tested fully in a laboratory environment.

The Space Shuttle is a complex digitally controlled vehicle in which most
navigation, guidance, flight control, systems management, sequencing, display
generation, and crew controls are processed by the redundant central digital
computers. To perform a truly integrated test of the mated vehicle, it is
necessary to supply coordinated sensor and crew data to the flight software; so
the system can mode and sequence as it does during a flight. In addition, the
effect of real sensors (IMUs, TACAN, pressure transducers, crew, etc) upon
real effecters (elevons, rudder, engine bells, landing gears, ventdoors,
displays, etc) should be measured. Vehicle safety requirements also necessitate
that certain signals such asthoseinvolved in the mixing of hypergolic fuels
and oxidizers be inhibited during a DIT.

The DIT methodology allows the above requirements to be satisfied in a
conceptually simple manner. A defined flight scenario is first run in a closed
loop digital simulation. The sensor inputs to the simulated flight software
are recorded and converted by an off line program (SIMGEN) into the proper format
to drive the flight software during a DIT run. This data (SIMDATA) is then
supplied to the vehicle by means of the Launch Data Bus, which is controlled by
the Launch Processing System. SIMDATA may be used instead of real sensor data
(substitution mode), or it may be added to real sensor data (combination mode)
to produce realistic sensor profiles. The combination mode necessitates that
SIMDATA be compensated with ground nominal models of the sensors.

129

DIT runs are evaluated by observing telemetry data and cockpit displays.
The DIT data is compared against analogous results of the original digital
simulation and laboratory DIT runs,

Initial development of DITs are performed in the Rockwell Avionics Develop-
ment Laboratory. Shuttle Avionics Test Sets (SATS) are employed to control
the tests, record telemetry data, and simulate real sensors when necessary.
Real flight computers, mass memory and displays are employed. At KSC, DIT
tests are planned to be run in the Orbiter Processing Facility (OPF) and in the
Vehicle Assembly Building (VAB).

Successful DIT runs have been performed in the Avionics Development Labora-
tory on both the Approach and Landing Test software and on preliminary Orbital
Flight Test software. These tests verified the described techniques: SIMDATA
was combined with a real IMU sensor data to demonstrate the end to end test
capability; synchronization of SIMDATA and flight software was achieved. The
test have proved to be repeatable, and good agreement between DIT runs and the
digital simulation runs have been achieved. Three IMU alignment discrepancies
and one flight software discrepancy were discovered as a by-product of these
activities.

As a result of our activities to date a number of generalizations relevant
to other avionics systems may be suggested. First, consideration of an integra-
ted test capability at the beginning of a program can prevent the unnecessary
expense of retrofitting the test after the program in underway. Second, a
port into the flight software must be provided so that sensor data may be
injected into flight software. Third, flight software code should be provided
with a test mode whereby it can accept and utilize externally supplied sensor
data. Fourth, flight software should be provided with a mechanism to inhibit
hazardous ouputs during an integrated test. Finally the DIT technique can be
used to run any desired scenario with any degree of off nominal performance.
It can be employed not only as a final integration test (as planned for KSC)
but also as a more comprehensive system verification tool.

130

BASELINE HARDWARE CONFIGURATION

CREW INPUTS

LIGHT DISPLAYS

VEHICLE

LPS

,

I LAUNCH PROCESSING SYSTEM
ILPSI

Figure 1 c

DIT DEVELOPMENT PROCESS

CLOSED LOOP DIGITAL SIMULATION DITIKSC

FL1 s/w
8
DIT PATCHES

t---------------,

R
i

INPUT OlJTPtJl
RO”T’NES MODINC & ROUTIMS ;;;;g

, - CALCULATION

I
PROGRAMS

I

I

I

iCUIPuT
IRO”T~NE EFFECTCR
r---l O”lPCT~

CALCULATIGN ul-
1--L

CRfW INPUTS
VEHICLE
ENVIRONMEM

-lKj -+

*
REA!
EFFECTORS

-LAUNCH DAlA BUS

RECORD !
SENSOR !-mm
INPUTS

---- ________ SIM _ --I CEN

LPS + _ GROU)D
NOMINAL
MODELS
OF

SIM DATA TAPE SENSOR 5

POSIllOh
FEEDBACK

Figure 2

131

DIT DEVELOPMENT SCHEDULE

1977 1978 1979
NID JIFIMIAIMIl,jJIAISIOINID JIFIMIAIMIJIJIAISJ

v m ALT FEASIBILITY DEMONSTRATION

~ PRELIMINARY ENTRY RELEASE

I PRELIMINARY ASCENT
w RELEASE

ENTRY FACI

m OFT-l FACI

- ;;;;T;A; I

A OPF-DIT

A VAB-D IT

OFT-l A
FLIGHT

MMU EIIt

Figure 3

LAB CONFIGURATION FOR DIT TESTING

TELEMETRY
BUS

LEGEND
htMU - MarsMemory Unit
GPC - General Purpose Computer
DEU - Display El~lmnlcs Unll
Ff - Flight Forward
FA - FI ighl All
MDM - MulliplererlDcmul~iplerer
IMU - lncrlial Mearuremenl Unit
SAIS ShulUe Avionics Test %I
LDB - Launch Data Bus
DES - Dar Bus Simulalor
IPL - lnilial Program Load
LPSCP- taunch Prccerring System

canlrol Program --__.-- - --

Figure 4

132

JACAN TEST SET

MSBLS TEST SET

RA TEST SET

LPS

LDB .

OPF Configuration

Figure 5

VAB Configuration
OPTIONAL

I

T-----------r------------ 1

r---
k---

I KS
I SIM

i-------A

,--A
I ----i

I I OHS
I SIM

I
I I I .---_-----'

c-------------,

LEGEND I
SRB - SOLID ROCKET BOOSTER

EXTERNAL TANK
- REACTION CONTROL SYSTEM

ORBITAL MANEUVERING SYSTEM 1
1 DPS - DATA PROCESSING SYSTEM

I
SW - SOFTWARE

RADAR ALTIMETER
1 %LS : MICROWAVE SCAN BEAM I

LANDING SYSTEM
SSME - SPACE SHUTTLE MAIN ENGINE i
FRT - FLIGHT READINESS TEST

1 LPS - LAUNCH PROCESSING SYSTEM

I LDB - LAUNCH DATA BUS 1

.-------mm m-w- J

I I I
1
PS
6
;W

I J

Figure 6

133

DOWNRANGE VELOCITY WITH RESPECT TO RUNWAY

(feet/second) meters/second
(6000)

(4000)

(2000)

(0)

(-2000)

(-4000) -

0 200 400 600 800 1000 1200 1400 1600

seconds

Figure 7

ESTIMATED ALTITUDE RATE

(feet/second) meters/second
(200)

(0)

(-200)

(-400)

(-600)

(-800) -240~ 1 I I

--- DIGITAL SIMULATION
---SUBSTITUTION MODE
-COMBINATION MODE

-.-DIGITAL SIMULATION
---SUBSTITUTION MODE
- COMBINATION MODE

0 200 400 600 800 1000 1200 1400 1600

seconds

Figure 8

134

, , ..-.-- -.. . . , , . _

1. Rcpwt No.
NASA CP-2064

4. Title and Subtitle

2. Government Accession No. 3. Recipient’s Catalog No.

5. Report Date
November 1978

TOOLS FOR EMBEDDED COMPUTING SYSTEMS SOFTWARE
6. Performing Oqanization Code

7. Author(s)

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665

0. Performing Orgamzation Report No.

L-12640
_ 10. Work Unit No.

506-20-13-02
11. Contract ‘or Grant No.

2. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

5. Supplementary Notes

13. Type of Report and Period Covered

Conference Publicatior

14. Sponsoring Agency Code

6. Abstract

NASA, in cooperation with the AIAA Computer Systems Technical Committee, spon-
sored the "NASA/AMA Workshop on Tools for Embedded Computing Systems Software"
in Hampton, Virginia, on November 7-8, 1978. The objectives of the workshop
were to assess the current state of tools for embedded systems software and
determine future directions for tool development. A synopsis of the talk and
the key figures.of each workshop presentation, together with chairmen summaries,
are included in this publication. The presentations covered four major areas:
Tools and the Software Environment (development and testing); Tools and Software
Requirements, Design, and Specification; Tools and Language Processors;-and Tools
and Verification and Validation (analysis and testing). The presentations described
described and assessed the utility and contribution of existing tools and recent
research results for the development and testing of embedded computing systems
software.

1. Key Words (Suggested by Author(s)) 16. Distribution Statement

Embedded computing systems software
Software tools

Unclassified - Unlimited

Software development and testing
environment

Software requirements
Design and specification tools
Language processing tools
Software verification and validation

tools Subject Category 61

I. Security Classif. (of this report1 20. Security Classif. (of this page) 21. No. of Pages 22. Price’

140 $7.25

* For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA-Langley, 1978

